
Polyspace® Code Prover™

User's Guide

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ User's Guide
© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online Only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Introduction to Polyspace Products
1

Polyspace Code Prover Product Description 1-2
Key Features . 1-2

Polyspace Verification . 1-3
Polyspace Verification . 1-3
Value of Polyspace Verification . 1-3

How Polyspace Verification Works . 1-6
What is Static Verification . 1-6
Exhaustiveness . 1-7

Related Products . 1-8
Polyspace Products for Verifying Ada Code 1-8
Polyspace Bug Finder . 1-8

Tool Qualification and Certification . 1-9

How to Use Polyspace Software
2

Polyspace Verification and the Software Development
Cycle . 2-2

Software Quality and Productivity . 2-2
Best Practices for Verification Workflow 2-3

Implement Process for Verification . 2-4
Overview of the Polyspace Process . 2-4
Define Process to Meet Your Goals . 2-4
Apply Process to Assess Code Quality 2-5

iv Contents

Improve Your Verification Process . 2-5

Sample Workflows for Polyspace Verification 2-6
Overview of Verification Workflows . 2-6
Software Developers and Testers – Standard Development

Process . 2-6
Software Developers and Testers – Rigorous Development

Process . 2-8
Quality Engineers – Code Acceptance Criteria 2-11
Quality Engineers – Certification/Qualification 2-13
Model-Based Design Users — Verifying Generated Code . . . 2-14
Project Managers — Integrating Polyspace Verification with

Configuration Management Tools 2-17

Setting Up Project: Basic Steps
3

What is a Project? . 3-2

What is a Project Template? . 3-3

Create New Project . 3-4

Add Source Files and Include Folders 3-6

Specify Results Folder . 3-8

Specify Analysis Options . 3-10
Specify Options in User Interface . 3-10
Specify Options from DOS and UNIX Command Line 3-11
Specify Options from MATLAB Command Line 3-11

Save Analysis Options as Project Template 3-12

Specify External Text Editor . 3-15

Change Default Font Size . 3-17

v

Setting Up Project : Advanced Steps
4

Create Projects Automatically from Your Build System 4-2
Create Project in User Interface . 4-2
Create Project from DOS and UNIX Command Line 4-4
Create Project from MATLAB Command Line 4-4

Requirements for Project Creation from Build Systems . . . 4-6

Your Compiler Is Not Supported . 4-8

Create Multiple Modules . 4-11

Create Multiple Analysis Option Configurations 4-12

Customize Results Folder Location and Name 4-13

Define Broad Requirements for Verification 4-14

Define Specific Requirements for Verification 4-16

Provide Context for C Code Verification 4-18

Provide Context for C++ Code Verification 4-20

Setting Up Project: Additional Information
5

Create Projects Using Visual Studio Information 5-2
Use Visual Studio Project . 5-2
Trace Visual Studio Build . 5-2

Cannot create project from Visual Studio build 5-6

Storage of Polyspace Preferences . 5-7

vi Contents

Emulating Your Runtime Environment
6

Set Up a Target . 6-2
Target & Compiler Overview . 6-2
Specify Target and Compiler . 6-2
Modify Predefined Target Processor Attributes 6-3
Define Generic Target Processors . 6-3
Common Generic Targets . 6-5
View or Modify Existing Generic Targets 6-6
Delete Generic Target . 6-8
Compile Operating System Dependent Code 6-10
Address Alignment . 6-17
Ignore or Replace Keywords Before Compilation 6-18
Language Extensions . 6-20
Verify Keil or IAR Dialects . 6-21
Gather Compilation Options Efficiently 6-28

Supported C++ 2011 Standards . 6-30

Verify C Application Without a “Main” 6-34
Main Generator Overview . 6-34
Automatically Generate a Main . 6-34
Manually Generate a Main . 6-36
Specify Call Sequence . 6-36
Main Generator Assumptions . 6-37

Polyspace C++ Class Analyzer . 6-38
Why Provide a Class Analyzer . 6-38
How the Class Analyzer Works . 6-39
Sources Verified . 6-39
Architecture of Generated Main . 6-39
Class Verification Log File . 6-40
Characteristics of Class and Log File Messages 6-40
Behavior of Global Variables and Members 6-41
Methods and Class Specifics . 6-43
Simple Class . 6-45
Simple Inheritance . 6-47
Multiple Inheritance . 6-48
Abstract Classes . 6-49
Virtual Inheritance . 6-49
Other Types of Classes . 6-50

vii

Data Range Specifications . 6-52

Create Data Range Specification Template 6-53

Specify Data Ranges Using Existing Template 6-55

Edit Existing DRS Template . 6-56

Remove Non Applicable Entries from DRS Template 6-57

Specify Data Ranges Using Text Files 6-58
DRS Text File Format . 6-59
Tips for Creating DRS Text Files . 6-59
Example DRS Text File . 6-60

Perform Efficient Module Testing with DRS 6-61

Reduce Oranges with DRS . 6-63
Why Is DRS Most Effective on Module Testing? 6-64
Example . 6-64

DRS Configuration Settings . 6-66

Variable Scope . 6-71
DRS Support for Structures . 6-73
DRS Support for Union Members . 6-73

XML Format of DRS File . 6-75
Syntax Description — XML Elements 6-75
Valid Modes and Default Values . 6-79

Preparing Source Code for Verification
7

Stubbing Overview . 7-3

When to Provide Function Stubs . 7-4

Manual stubs . 7-5

viii Contents

Provide Stubs for Functions . 7-6

Stubbing Examples . 7-7
Example: Specification . 7-7
Example: Colored Source Code . 7-8

Automatic Stubbing Behavior for C++ Pointer/Reference . 7-10

Specify Functions to Stub Automatically 7-12
Special Characters in Function Names 7-12
Function Syntax for C++ . 7-12

Constrain Data with Stubbing . 7-14
Add Precision Constraints Using Stubs 7-14
Default Behavior of Global Data . 7-15
Constraining the Data . 7-15
Apply the Technique . 7-16
Integer Example . 7-16
Recode Specific Functions . 7-17

Default and Alternative Behavior for Stubbing 7-19

Function Pointer Cases . 7-21

Stub Functions with Variable Argument Number 7-22

Stub Standard Library Functions . 7-24

Check Variable Ranges with assert 7-25

Check Global Variable Ranges with Global Assert 7-26

Model Variables External to Application 7-28

External Variables . 7-29

Volatile Variables . 7-30

Absolute Addresses . 7-31

Data Rules . 7-32

ix

Definitions and Declarations . 7-33
Definition . 7-33
Declaration . 7-33

Prepare Code for Built-In Functions 7-34
Overview . 7-34
Stubs of stl Functions . 7-34
Stubs of libc Functions . 7-34

Model Tasks . 7-36

Model Tasks if main Contains Infinite Loop 7-43

Model Execution Sequence in Tasks 7-47

Prevent Concurrent Access Using Temporally Exclusive
Tasks . 7-51

Prevent Concurrent Access Using Critical Sections 7-56

Requirements for Multitasking Verification 7-62

Comment Code for Known Defects . 7-64

Comment Syntax for Marking Known Defects 7-68
Syntax Examples: Runtime Errors 7-70
Syntax Examples: Coding Rule Violations 7-70

Check Acronyms . 7-72

Types Promotion . 7-74
Unsigned Integers Promoted to Signed Integers 7-74
Promotions Rules in Operators . 7-75
Example . 7-75

Ignored Inline Assemblers . 7-77

Exclude Assembly Code if Compiler Generates Errors 7-80

Stub Single Function Containing Assembly Code 7-81

Stub Multiple Functions Containing Assembly Code 7-82

x Contents

Local Variables in Functions with Assembly Code 7-84

Using memset and memcpy . 7-85
Polyspace Specifications for memcpy 7-85
Polyspace Specifications for memset 7-87

Running a Verification
8

Types of Verification . 8-2

Select Analysis Options Configuration 8-3

Check for Compilation Problems . 8-4

Start Local Verification . 8-6

Start Remote Verification . 8-7

Stop Verification . 8-8
Stop Remote Verification . 8-8
Stop Local Verification . 8-8

Phases of Verification . 8-9

Run File-by-File Verification . 8-10

Run File-by-File Batch Verification 8-11

Verify All Modules in Project . 8-13

Manage Previous Verifications With Polyspace Metrics . . . 8-14

Manage Remote Verifications . 8-17

Monitor Progress of Verification . 8-18

Run Verification from Command Line 8-19

xi

Manage Remote Analyses at the Command Line 8-20

Modularization of Large Applications 8-22

Partition Application into Modules . 8-23

Choose Number of Modules for Application 8-25

Partition Application Using Batch Command 8-27
Basic Options . 8-27
Constrain Module Complexity During Partitioning 8-28
Control Naming of Result Folders . 8-29
Forbid Cycles in Module Dependence Graph 8-30

Troubleshooting Verification Problems
9

View Error Information When Verification Stops 9-3
View Error Information in Project Manager 9-3
View Error Information in Log File . 9-3

Troubleshoot Compiler and Linking Errors 9-6

Obtain System Information for Technical Support 9-7
Information Required . 9-7
How to Obtain Required Information 9-7

Header File Location Not Specified . 9-8
Message . 9-8
Possible Cause . 9-8
Solution . 9-8

Polyspace Cannot Find the Server . 9-9
Message . 9-9
Possible Cause . 9-9
Solution . 9-9

Errors From Disk Defragmentation and Antivirus
Software . 9-10

Message . 9-10

xii Contents

Possible Cause . 9-10
Solution . 9-10

Insufficient Memory During Report Generation 9-11
Message . 9-11
Possible Cause . 9-11
Solution . 9-11

Compilation Error Overview . 9-12

Running Multiple Polyspace Processes 9-13

Troubleshoot Using Preprocessed Files 9-14
Preprocessed Files . 9-14
Troubleshoot Using Preprocessed Files 9-14
Examples . 9-14

Check Compilation Before Verification 9-18

Syntax Error . 9-19
Message . 9-19
Code Used . 9-19
Solution . 9-19

Undeclared Identifier . 9-20
Message . 9-20
Code Used . 9-20
Solution . 9-20

Missing Identifiers with Keil or IAR Dialect 9-21
Message . 9-21
Possible Cause . 9-21
Solution . 9-21

Unknown Prototype . 9-22
Message . 9-22
Code Used . 9-22
Solution . 9-22

No Such File or Folder . 9-23
Messages . 9-23
Code Used . 9-23
Solution . 9-23

xiii

#error Directive . 9-24
Message . 9-24
Code Used . 9-24
Solution . 9-24

Object is Too Large . 9-25
Messages . 9-25
Code Used . 9-25
Solution . 9-25

Unsupported Non-ANSI Keywords (C) 9-26

Initialization of Global Variables (C++) 9-28

Double Declarations of Standard Template Library
Functions . 9-29

Large Static Initializer . 9-30

Compilation Messages . 9-31

C++ Dialect Issues . 9-32
ISO versus Default Dialects . 9-32
CFront2 and CFront3 Dialects . 9-34
Visual Dialects . 9-35
GNU Dialect . 9-36

C Link Errors . 9-40
Link Error Overview (C) . 9-40
Function: Procedure Multiply Defined 9-41
Function: Wrong Argument Type . 9-41
Function: Wrong Argument Number 9-41
Function: Wrong Return Type . 9-42
Variable: Wrong Type . 9-42
Variable: Signed/Unsigned . 9-43
Variable: Different Qualifier . 9-43
Variable: Array Against Variable . 9-43
Variable: Wrong Array Size . 9-44
Missing Required Prototype for varargs 9-44

C++ Link Errors . 9-46
STL Library C++ Stubbing Errors . 9-46
Lib C Stubbing Errors . 9-47

xiv Contents

Standard Library Function Stubbing Errors 9-49
Conflicts Between Library Functions and Polyspace Stubs . 9-49
_polyspace_stdstubs.c Compilation Errors 9-49
Troubleshooting Approaches for Standard Library Function

Stubs . 9-50
Restart with the -I option . 9-51
Replace Automatic Stubbing with Include Files 9-51
Create _polyspace_stdstubs.c File with Required Includes . . 9-52
Provide .c file Containing Prototype Function 9-53
Ignore _polyspace_stdstubs.c . 9-54

Automatic Stubbing Errors . 9-55
Three Types of Error Messages . 9-55
Unknown Prototype Error . 9-55
Parameter -entry-points Error . 9-55

Reduce Verification Time . 9-57
Factors Affecting Verification Time 9-57
Techniques to Improve Verification Performance 9-57
Tune Polyspace Parameters . 9-60
Subdivide Code . 9-60
Reduce Procedure Complexity . 9-68
Reduce Task Complexity . 9-71
Reduce Variable Complexity . 9-71
Choose Lower Precision . 9-72

Storage of Temporary Files . 9-73

Reviewing Verification Results
10

Open Remote Verification Results . 10-3

Download Remote Verification Results From Command
Line . 10-4

Open Results of File-by-File Batch Verification 10-5

Open Results of File-by-File Verification 10-6

xv

Open Local Verification Results . 10-7

Search Results in Results Manager . 10-9

Set Character Encoding Preferences 10-12

Open Results for Generated Code . 10-15
Manually Create the Code Generator Text File 10-15

Review Results Progressively . 10-16

Assign Review Status to Result . 10-18

Organize Results Using Review Scopes 10-24

Organize Results Using Filters and Groups 10-27

View Call Sequence for Checks . 10-36

View Call Tree for Functions . 10-37
View Callers and Callees of a Function 10-37
Navigate Call Tree . 10-40

View Access Graph for Global Variables 10-41

Customize Review Status . 10-42

Use Range Information in Results Manager 10-47

View Pointer Information in Results Manager 10-51

View Probable Cause for Checks . 10-52

Check Colors . 10-55

Source Code Colors . 10-56

Results Manager Overview . 10-57

Results Summary . 10-58

xvi Contents

Source . 10-62
Source . 10-62
Dashboard . 10-70

Check Details . 10-76
Error Call Graph . 10-76

Check Review . 10-77
Check Review . 10-77

Call Hierarchy . 10-79

Variable Access . 10-82

Red Checks . 10-90

Gray Checks . 10-91
Gray Checks . 10-91
Common Causes for Gray Checks 10-91

Orange Checks . 10-93
Orange Check Identified as Potential Errors 10-93

Color Sequence of Checks . 10-96

Defects from Code Integration . 10-100

Defects in Unprotected Shared Data 10-101

Defects Related to Pointers . 10-102
Messages on Dereferences . 10-102
Variables in Structures (C) . 10-103

Global Variables . 10-105
Initializing Global Variables . 10-105
Using Global Variables . 10-106

Dataflow Verification . 10-107

Results Folder . 10-108
ALL Subfolder . 10-108
Polyspace-Doc Subfolder . 10-109
Polyspace-Instrumented Subfolder 10-110

xvii

Reusing Review Comments . 10-111

Import Review Comments from Previous Verifications . 10-112
Import Comments from Previous Verifications 10-112
Automatically Import Comments from Last Verification . 10-112
Automatically Import Comments During Command-Line

Verification . 10-113

View Checks and Comments Report 10-114

Generate Report from User Interface 10-115

Generate Report from Command Line 10-117
-template path . 10-117
-format type . 10-117
-help or -h . 10-117
-output-name filename . 10-117
-results-dir folder_paths . 10-117

Open Report . 10-119

Customize Report Templates . 10-121
Create Custom Template . 10-121
Apply Global Filters in Template 10-121
Override Global Filters . 10-123
Use Custom Template . 10-124

Managing Orange Checks
11

Sources of Orange Checks . 11-2
When Orange Checks Occur . 11-2
Why Review Orange Checks . 11-2
How to Review Orange Checks . 11-3
How to Reduce Orange Checks . 11-3

Do I Have Too Many Orange Checks? 11-5
Software Development Stage . 11-5
Quality Goals . 11-7

xviii Contents

Improve Verification Precision . 11-9

Provide Context for Verification . 11-10

Follow Coding Rules . 11-12

Review Orange Check . 11-13

Organize Check Review . 11-15

Review Top Sources of Orange Checks 11-17

Identify Function Call Causing Orange Check 11-20

Test Orange Checks for Run-Time Errors 11-23

Limitations of Automatic Orange Tester 11-26
Unsupported Platforms . 11-26
Unsupported Polyspace Options . 11-26
Options with Restrictions . 11-26
Unsupported C Routines . 11-26

Coding Rule Sets and Concepts
12

Rule Checking . 12-2
Polyspace Coding Rule Checker . 12-2
Differences Between Bug Finder and Code Prover 12-2

Custom Naming Convention Rules . 12-4

Polyspace MISRA C 2004 and MISRA AC AGC Checkers . 12-10

Software Quality Objective Subsets (C:2004) 12-11
Rules in SQO-Subset1 . 12-11
Rules in SQO-Subset2 . 12-12

Software Quality Objective Subsets (AC AGC) 12-15
Rules in SQO-Subset1 . 12-15
Rules in SQO-Subset2 . 12-15

xix

MISRA C:2004 Coding Rules . 12-17
Supported MISRA C:2004 Rules . 12-17
MISRA C:2004 Rules Not Checked 12-53

Polyspace MISRA C:2012 Checker . 12-56

Software Quality Objective Subsets (C:2012) 12-57
Guidelines in SQO-Subset1 . 12-57
Guidelines in SQO-Subset2 . 12-57

MISRA C:2012 Coding Directives and Rules 12-59
Supported MISRA C:2012 Rules . 12-59
MISRA C:2012 Guidelines Not Checked 12-99

Polyspace MISRA C++ Checker . 12-102

Software Quality Objective Subsets (C++) 12-103
SQO Subset 1 – Direct Impact on Selectivity 12-103
SQO Subset 2 – Indirect Impact on Selectivity 12-105

MISRA C++ Coding Rules . 12-110
Supported MISRA C++ Coding Rules 12-110
MISRA C++ Rules Not Checked 12-129

Polyspace JSF C++ Checker . 12-135

JSF C++ Coding Rules . 12-136
Supported JSF C++ Coding Rules 12-136
JSF++ Rules Not Checked . 12-160

Checking Coding Rules
13

Activate Coding Rules Checker . 13-2

Select Specific MISRA or JSF Coding Rules 13-6

Create Custom Coding Rules . 13-9

Format of Custom Coding Rules File 13-11

xx Contents

Exclude Files from Rules Checking 13-12

Allow Custom Pragma Directives . 13-13

Specify Boolean Types . 13-14

Review Coding Rule Violations . 13-15

Filter and Group Coding Rule Violations 13-17

Generate Coding Rules Report . 13-18

Software Quality with Polyspace Metrics
14

Software Quality with Polyspace Metrics 14-2

Set Up Verification to Generate Metrics 14-3
Specify Automatic Verification . 14-3

Open Polyspace Metrics . 14-9

Organize Polyspace Metrics Projects 14-11

Protect Access to Project Metrics . 14-13

Web Browser Support . 14-15

Review Overall Progress . 14-16

Display Metrics for Single Project Version 14-20

Create File Module and Specify Quality Level 14-21

Compare Project Versions . 14-23

Review New Findings . 14-24

Review Results . 14-25

xxi

Save Review Comments . 14-27

Fix Defects . 14-28

Predefined SQO Levels . 14-29

Customize Software Quality Objectives 14-37

Elements in Custom SQO File . 14-40
HIS Metrics . 14-40
Non-HIS Metrics . 14-42

Polyspace Metrics Assumptions . 14-43

Status Acronyms . 14-44

Code Metrics . 14-45

Run-Time Checks . 14-55

Number of Lines of Code Calculation 14-57

Administer Results Repository . 14-58
Administer Repository Through Web Browser 14-58
Administer Repository From Command Line 14-58
Backup Results Repository . 14-60

Configure Model for Code Analysis
15

Model Configuration for Code Generation and Analysis . . 15-2

Configure Simulink Model . 15-3

Recommended Model Settings for Code Analysis 15-4

Check Simulink Model Settings . 15-5

Check Simulink Model Settings Before Code Generation . . 15-6

xxii Contents

Check Simulink Model Settings Before Analysis 15-8

Annotate Blocks for Known Errors or Coding-Rule
Violations . 15-10

Model Link for Polyspace Code Prover
16

Install Polyspace Plug-In for Simulink 16-2

Specify Signal Ranges . 16-3
Specify Signal Range through Source Block Parameters . . . 16-3
Specify Signal Range through Base Workspace 16-4

Annotate Code to Justify Polyspace Checks 16-8

Configure Data Range Settings . 16-10

Main Generation for Model Verification 16-12

Embedded Coder Considerations . 16-14
Default Options . 16-14
Data Range Specification . 16-14
Recommended Polyspace options for Verifying Generated

Code . 16-15
Hardware Mapping Between Simulink and Polyspace 16-19

TargetLink Considerations . 16-20
TargetLink Support . 16-20
Default Options . 16-20
Data Range Specification . 16-21
Lookup Tables . 16-21
Code Generation Options . 16-21

Generate and Verify Code with Configured Model 16-23

View Results in Polyspace Code Prover 16-25

Identify Errors in Simulink Models 16-27

xxiii

Troubleshoot Back to Model . 16-29
Back-to-Model Links Do Not Work 16-29
Your Model Already Uses Highlighting 16-29

Configure Code Analysis Options
17

Polyspace Configuration for Generated Code 17-2

Include Handwritten Code . 17-3

Specify Remote Analysis . 17-4

Configure Analysis Depth for Referenced Models 17-5

Specify Location of Results . 17-6

Check Coding Rules Compliance . 17-7

Configure Polyspace Analysis Options 17-9
Use the Configuration Window . 17-9
Link to a Configuration File . 17-9

Configure Polyspace Project Properties 17-11

Create a Polyspace Configuration File Template 17-12

Specify Header Files for Target Compiler 17-14

Open Polyspace Results Automatically 17-15

Remove Polyspace Options From Simulink Model 17-16

xxiv Contents

Run Polyspace on Generated Code
18

Specify Type of Analysis to Perform 18-2

Run Analysis for Embedded Coder . 18-5

Run Analysis for TargetLink . 18-6

Monitor Progress . 18-7
Local Analyses . 18-7
Remote Batch Analyses . 18-7

Using Polyspace Software in the Eclipse IDE
19

Install Polyspace Plug-In for Eclipse 19-2
Install Polyspace Plug-In for Eclipse IDE 19-2
Uninstall Polyspace Plug-In for Eclipse IDE 19-4

Verify Code in the Eclipse IDE . 19-5
Workflow for Code Verification in Eclipse 19-5
Create Eclipse Project . 19-5
Configure Polyspace Verification . 19-6
Start Verification . 19-6
Review Results . 19-7

Using Polyspace Software in Visual Studio
20

Install Polyspace Add-In for Visual Studio 20-2
Install Polyspace Add-In for Visual Studio 20-2
Uninstall Polyspace Add-In for Visual Studio 20-3

Verify Code in Visual Studio . 20-4
Code Verification in Visual Studio 20-4

xxv

Create Visual Studio Project . 20-4
Verify Code in Visual Studio . 20-5
Monitor Verification in Visual Studio 20-12
Review Verification Results in Visual Studio 20-14

Glossary

xxvi

1

Introduction to Polyspace Products

• “Polyspace Code Prover Product Description” on page 1-2
• “Polyspace Verification” on page 1-3
• “How Polyspace Verification Works” on page 1-6
• “Related Products” on page 1-8
• “Tool Qualification and Certification” on page 1-9

1 Introduction to Polyspace Products

1-2

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace Code Prover proves the absence of overflow, divide-by-zero, out-of-bounds
array access, and certain other run-time errors in C and C++ source code. It produces
results without requiring program execution, code instrumentation, or test cases.
Polyspace Code Prover uses static analysis and abstract interpretation based on formal
methods. You can use it on handwritten code, generated code, or a combination of the
two. Each operation is color-coded to indicate whether it is free of run-time errors, proven
to fail, unreachable, or unproven.

Polyspace Code Prover also displays range information for variables and function return
values, and can prove which variables exceed specified range limits. Results can be
published to a dashboard to track quality metrics and ensure conformance with software
quality objectives. Polyspace Code Prover can be integrated into build systems for
automated verification.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features

• Proven absence of certain run-time errors in C and C++ code
• Color-coding of run-time errors directly in code
• Calculation of range information for variables and function return values
• Identification of variables that exceed specified range limits
• Quality metrics for tracking conformance with software quality objectives
• Web-based dashboard providing code metrics and quality status
• Guided review-checking process for classifying results and run-time error status
• Graphical display of variable reads and writes

 Polyspace Verification

1-3

Polyspace Verification

In this section...

“Polyspace Verification” on page 1-3
“Value of Polyspace Verification” on page 1-3

Polyspace Verification

Polyspace products verify C, C++, and Ada code by detecting run-time errors before code
is compiled and executed.

To verify the source code, you set up verification parameters in a project, run the
verification, and review the results. A graphical user interface helps you to efficiently
review verification results. The software assigns a color to operations in the source code
as follows:

• Green – Indicates that the operation is proven to not have certain kinds of error.
• Red – Indicates that the operation is proven to have at least one error.
• Gray – Indicates unreachable code.
• Orange – Indicates that the operation can have an error along some execution paths.

The color-coding helps you to quickly identify errors and find the exact location of an
error in the source code. After you fix errors, you can easily run the verification again.

Value of Polyspace Verification

Polyspace verification can help you to:

• “Enhance Software Reliability” on page 1-3
• “Decrease Development Time” on page 1-4
• “Improve the Development Process” on page 1-5

Enhance Software Reliability

Polyspace software enhances the reliability of your C/C++ applications by proving code
correctness and identifying run-time errors. Using advanced verification techniques,
Polyspace software performs an exhaustive verification of your source code.

1 Introduction to Polyspace Products

1-4

Because Polyspace software verifies all executions of your code, it can identify code that:

• Never has an error
• Always has an error
• Is unreachable
• Might have an error

With this information, you know how much of your code does not contain run-time errors,
and you can improve the reliability of your code by fixing errors.

You can also improve the quality of your code by using Polyspace verification software to
check that your code complies with established coding standards, such as the MISRA C®,
MISRA® C++ or JSF® C++ standards.1

Decrease Development Time

Polyspace software reduces development time by automating the verification process and
helping you to efficiently review verification results. You can use it at any point in the
development process. However, using it during early coding phases allows you to find
errors when it is less costly to fix them.

You use Polyspace software to verify source code before compile time. To verify the source
code, you set up verification parameters in a project, run the verification, and review the
results. This process takes significantly less time than using manual methods or using
tools that require you to modify code or run test cases.

Color-coding of results helps you to quickly identify errors. You will spend less time
debugging because you can see the exact location of an error in the source code. After you
fix errors, you can easily run the verification again.

Polyspace verification software helps you to use your time effectively. Because you know
the parts of your code that do not have errors, you can focus on the code with proven (red
code) or potential errors (orange code).

Reviewing code that might have errors (orange code) can be time-consuming, but
Polyspace software helps you with the review process. You can use filters to focus on
certain types of errors or you can allow the software to identify the code that you should
review.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

 Polyspace Verification

1-5

Improve the Development Process

Polyspace software makes it easy to share verification parameters and results, allowing
the development team to work together to improve product reliability. Once verification
parameters have been set up, developers can reuse them for other files in the same
application.

Polyspace verification software supports code verification throughout the development
process:

• An individual developer can find and fix run-time errors during the initial coding
phase.

• Quality assurance engineers can check overall reliability of an application.
• Managers can monitor application reliability by generating reports from the

verification results.

1 Introduction to Polyspace Products

1-6

How Polyspace Verification Works

Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that
the verification it provides is not based on a given test case or set of test cases. The
dynamic properties obtained in the Polyspace verification are true for all executions of
the software.

What is Static Verification

Static verification is a broad term, and is applicable to any tool that derives dynamic
properties of a program without executing the program. However, most static verification
tools only verify the complexity of the software, in a search for constructs that may be
potentially erroneous. Polyspace verification provides deep-level verification identifying
almost all run-time errors and possible access conflicts with global shared data.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)

{ tab[i] = foo(i);

}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its domain variation.
For instance, the model of i is that it belongs to the static interval [0..999]. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborate
models are also used for this purpose).

By definition, an approximation leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact
is that this information is not required to ensure that no range error will occur; it is only
necessary to prove that the domain variation of i is smaller than the range of tab. Only
one check is required to establish that — and hence the gain in efficiency compared to
traditional approaches.

 How Polyspace Verification Works

1-7

Static code verification has an exact solution. However, this exact solution is not
practical, as it would require the enumeration of all possible test cases. As a result,
approximation is required for a usable tool.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification
works by performing upper approximations. In other words, the computed variation
domain of a program variable is a superset of its actual variation domain. As a result,
Polyspace verifies run-time error items that require checking.

1 Introduction to Polyspace Products

1-8

Related Products

In this section...

“Polyspace Products for Verifying Ada Code” on page 1-8
“Polyspace Bug Finder” on page 1-8

Polyspace Products for Verifying Ada Code

For information about Polyspace products that verify Ada code, see the following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

Polyspace Bug Finder

For information about Polyspace Bug Finder™ , see http://www.mathworks.com/
products/polyspace-bug-finder/.

http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspace-bug-finder/
http://www.mathworks.com/products/polyspace-bug-finder/

 Tool Qualification and Certification

1-9

Tool Qualification and Certification

You can use the DO Qualification Kit and IEC Certification Kit products to qualify
Polyspace Products for C/C++ for DO and IEC Certification.

To view the artifacts available with these kits, use the Certification Artifacts Explorer.
Artifacts included in the kits are not accessible from the MathWorks® web site.

For more information on the IEC Certification Kit, see IEC Certification Kit (for ISO
26262 and IEC 61508).

For more information on the DO Qualification Kit, see DO Qualification Kit (for DO-178).

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/do-178/

1-10

2

How to Use Polyspace Software

• “Polyspace Verification and the Software Development Cycle” on page 2-2
• “Implement Process for Verification” on page 2-4
• “Sample Workflows for Polyspace Verification” on page 2-6

2 How to Use Polyspace Software

2-2

Polyspace Verification and the Software Development Cycle

In this section...

“Software Quality and Productivity” on page 2-2
“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity

The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are three related variables to
consider: cost, quality, and time.

Quality

Cost Time

Changing the requirements for one of these variables affects the other two.

Generally, the criticality of your application determines the balance between these three
variables – your quality model. With classical testing processes, development teams
generally try to achieve their quality model by testing all modules in an application
until each module meets the required quality level. Unfortunately, this process often
ends before quality requirements are met, because the available time or budget has been
exhausted.

Polyspace verification allows a different process. Polyspace verification can support both
productivity improvement and quality improvement at the same time. However, you
must balance the aims of these activities.

You should not perform code verification at the end of the development process. To
achieve maximum quality and productivity, integrate verification into your development
process, considering time and cost restrictions.

This section describes how to integrate Polyspace verification into your software
development cycle. It explains both how to use Polyspace verification in your current
development process, and how to change your process to get more out of verification.

 Polyspace Verification and the Software Development Cycle

2-3

Best Practices for Verification Workflow

Polyspace verification can be used throughout the software development cycle. However,
to maximize both quality and productivity, the most efficient time to use it is early in the
development cycle.

Validation Testing

Integration Testing

Module Testing

Requirements

Functional Design

Coding

Code
Analysis

Code
Verification

Polyspace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is written, to
check coding rules and quickly identify obvious defects. Once the code is stable, you verify
it again before module/unit testing, with more stringent verification and review criteria.

Using verification early in the development cycle improves both quality and productivity,
because it allows you to find and manage defects soon after the code is written. This
saves time because each user is familiar with their own code, and can quickly determine
why the code contains defects. In addition, defects are cheaper to fix at this stage, since
they can be addressed before the code is integrated into a larger system.

2 How to Use Polyspace Software

2-4

Implement Process for Verification

In this section...

“Overview of the Polyspace Process” on page 2-4
“Define Process to Meet Your Goals” on page 2-4
“Apply Process to Assess Code Quality” on page 2-5
“Improve Your Verification Process” on page 2-5

Overview of the Polyspace Process

Polyspace verification cannot magically produce quality code at the end of the
development process. However, if you integrate Polyspace verification into your
development process, Polyspace verification helps you to measure the quality of your
code, identify issues, and ultimately achieve your own quality goals.

To implement Polyspace verification within your development process, you must perform
each of the following steps:

1 Define your quality goals.
2 Define a process to match your quality goals.
3 Apply the process to assess the quality of your code.
4 Improve the process.

Define Process to Meet Your Goals

Once you have defined your quality goals, you must define a process that allows you to
meet those goals. Defining the process involves actions both within and outside Polyspace
software.

These actions include:

• Communicating coding standards (coding rules) to your development team.
• Setting Polyspace analysis options. For more information, see “Specify Analysis

Options”.
• Setting review criteria in the Results Manager perspective for consistent review of

results. For more information, see “Organize Results Using Review Scopes”.

 Implement Process for Verification

2-5

Apply Process to Assess Code Quality

Once you have defined a process that meets your quality goals, it is up to your
development and testing teams to apply it consistently to all software components.

This process includes:

1 Running a Polyspace verification on each software component as it is written.
2 Reviewing verification results consistently. See “Assign Review Status to Result”.
3 Saving review comments for each component, so they are available for future review.

See “Import Review Comments from Previous Verifications”.
4 Performing additional verifications on each component, as defined by your quality

goals.

Improve Your Verification Process

Once you review initial verification results, you can assess both the overall quality
of your code, and how well the process meets your requirements for software quality,
development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process. These
actions may include:

• Reassessing your quality goals.
• Changing your development process to produce code that is easier to verify.
• Changing Polyspace analysis options to improve the precision of the verification.
• Changing Polyspace options to change how verification results are reported.

For more information, see “Orange Check Management”.

2 How to Use Polyspace Software

2-6

Sample Workflows for Polyspace Verification

In this section...

“Overview of Verification Workflows” on page 2-6
“Software Developers and Testers – Standard Development Process” on page 2-6
“Software Developers and Testers – Rigorous Development Process” on page 2-8
“Quality Engineers – Code Acceptance Criteria” on page 2-11
“Quality Engineers – Certification/Qualification” on page 2-13
“Model-Based Design Users — Verifying Generated Code” on page 2-14
“Project Managers — Integrating Polyspace Verification with Configuration
Management Tools” on page 2-17

Overview of Verification Workflows

Polyspace verification supports two goals at the same time:

• Reducing the cost of testing and validation
• Improving software quality

You can use Polyspace verification in different ways depending on your development
context and quality model.

This section provides sample workflows that show how to use Polyspace verification in a
variety of development contexts.

Software Developers and Testers – Standard Development Process

User Description

This workflow applies to software developers and test groups using a standard
development process, where coding rules are not used or followed consistently.

Quality

The main goal of Polyspace verification is to improve productivity while maintaining or
improving software quality. Verification helps developers and testers find and fix bugs

 Sample Workflows for Polyspace Verification

2-7

more quickly than other processes. It also improves software quality by identifying bugs
that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The goal is to
deliver code of equal or better quality that other processes, while optimizing productivity
to provide a predictable time frame with minimal delays and costs.

Verification Workflow

This process involves file-by-file verification immediately after coding, and again just
before functional testing.

Validation Testing

Integration Testing

Module Testing

Requirements

Functional Design

Coding

Code Verification

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform robustness verification,
using default Polyspace options.

Note: This means that verification uses the automatically generated “main” function.
This main will call unused procedures and functions with full range parameters.

2 Each developer performs file-by-file verification as they write code, and reviews
verification results.

3 The developer fixes red errors and examines gray code identified by the verification.
4 Until coding is complete, the developer repeats steps 2 and 3 as required..
5 Once a developer considers a file complete, they perform a final verification.
6 The developer fixes red errors, examines gray code, and performs a selective orange

review.

2 How to Use Polyspace Software

2-8

Note: The goal of the selective orange review is to find as many bugs as possible
within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked oranges.
However, the verification process represents a significant improvement from other
testing methods.

Costs and Benefits

When using verification to detect bugs:

• Red and gray checks – Reviewing red and gray checks provides a quick method to
identify real run-time errors in the code.

• Orange checks – Selective orange review provides a method to identify potential
run-time errors as quickly as possible. The time required to find one bug varies from 5
minutes to 1 hour, and is typically around 30 minutes. This represents an average of
two minutes per orange check review, and a total of 20 orange checks per package in
Ada and 60 orange checks per file in C.

Disadvantages to this approach:

• Number of orange checks – If you do not use coding rules, your verification results
will contain more orange checks.

• Unreviewed orange checks – Some bugs may remain in unchecked oranges.

Software Developers and Testers – Rigorous Development Process

User Description

This workflow applies to software developers and test engineers working within
development groups. These users are often developing software for embedded systems,
and typically use coding rules.

These users typically want to find bugs early in the development cycle using a tool that is
fast and iterative.

Quality

The goal of Polyspace verification is to improve software quality with equal or increased
productivity.

 Sample Workflows for Polyspace Verification

2-9

Verification can prove the absence of run-time errors, while helping developers and
testers to find and fix defects efficiently.

Verification Workflow

This process involves both code analysis and code verification during the coding phase,
and thorough review of verification results before module testing. It may also involve
integration analysis before integration testing.

Compilation
and Linking

Writing
Code

Textual
Requirements

Hand-written
Code

Module
Design

Object
Code

Application
Design

Development Artifact

Software Development Activity

Code Analysis Code Verification

Verification of
C and C++ Code

Module Testing

Integration Testing

Workflow for Code Verification

Note: Solid arrows in the figure indicate the progression of software development
activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to perform contextual verification.
This involves:

• Using Data Range Specifications (DRS) to define initialization ranges for input
data. For example, if a variable “x” is read by functions in the file, and if x can be

2 How to Use Polyspace Software

2-10

initialized to any value between 1 and 10, this information should be included in
the DRS file.

• Creates a “main” program to model call sequence, instead of using the
automatically generated main.

• Sets options to check the properties of some output variables. For example, if a
variable “y” is returned by a function in the file and should always be returned
with a value in the range 1 to 100, then Polyspace can flag instances where that
range of values might be breached.

2 The project leader configures the project to check the required coding rules.
3 Each developer performs file-by-file verification as they write code, and reviews both

coding rule violations and verification results.
4 The developer fixes coding rule violations and red errors, examines gray code, and

performs a selective orange review.
5 Until coding is complete, the developer repeats steps 2 and 3 as required.
6 Once a developer considers a file complete, they perform a final verification.
7 The developer or tester performs an exhaustive orange review on the remaining

orange checks.

Note: The goal of the exhaustive orange review is to examine orange checks that are
not reviewed as part of selective reviews. When you fix coding rule violations, the
total number of orange checks is reduced, and the remaining orange checks are likely
to reveal problems with the code.

Optionally, an additional verification can be performed during the integration phase. The
purpose of this additional verification is to track integration bugs, and review:

• Red and gray integration checks;
• The remaining orange checks with a selective review: Integration bug tracking.

Costs and Benefits

With this approach, Polyspace verification typically provides the following benefits:

• Fewer orange checks in the verification results (improved selectivity). The number of
orange checks is typically reduced to 3–5 per file, yielding an average of 1 bug. Often,
several of the orange checks represent the same bug.

• Fewer gray checks in the verification results.

 Sample Workflows for Polyspace Verification

2-11

• Typically, each file requires two verifications before it can be checked-in to the
configuration management system.

• The average verification time is about 15 minutes.

Note: If the development process includes data rules that determine the data flow
design, the benefits might be greater. Using data rules reduces the potential of
verification finding integration bugs.

If performing the optional verification to find integration bugs, you may see the following
results. On a typical 50,000 line project:

• A selective orange review may reveal one integration bug per hour of code review.
• Selective orange review takes about 6 hours to complete. This is long enough to

review orange checks throughout the whole application and represents a step towards
an exhaustive orange check review. Spending more time is unlikely to be efficient.

• An exhaustive orange review would take between 4 and 6 days, assuming that 50,000
lines of code contains approximately 400–800 orange checks. Exhaustive orange
review is typically recommended only for high-integrity code, where the consequences
of a potential error justify the cost of the review.

Quality Engineers – Code Acceptance Criteria

User Description

This workflow applies to quality engineers who work outside of software development
groups, and are responsible for independent verification of software quality and
adherence to standards.

These users generally receive code late in the development cycle, and may even be
verifying code that is written by outside suppliers or other external companies. They are
concerned with not just detecting bugs, but measuring quality over time, and developing
processes to measure, control, and improve product quality going forward.

Quality

The main goal of Polyspace verification is to control and evaluate the safety of an
application.

The criteria used to evaluate code can vary widely depending on the nature of the
application. For example:

2 How to Use Polyspace Software

2-12

• You may be satisfied with zero red checks.
• In addition to zero red checks, you may want to conduct an exhaustive orange check

review.

Typically, these criteria become increasingly stringent as a project advances from early,
to intermediate, and eventually to final delivery.

For more information on defining these criteria, see “Customize Software Quality
Objectives”.

Verification Workflow

This process usually involves both code analysis and code verification before validation
phase, and thorough review of verification results based on defined quality goals.

Validation Testing

Integration Testing

Module Testing

Requirements

Functional Design

Coding

Code Verification

Original
Equipment

Manufacturer

Sub-contractor

Note: Verification is often performed multiple times, as multiple versions of the software
are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality goals for the code to be written,
including specific quality levels for each version of the code to be delivered (first,
intermediate, or final delivery) For more information, see “Customize Software
Quality Objectives”.

2 Development group writes code according to established standards.
3 Development group delivers software to the quality engineering group.
4 The project leader configures the Polyspace project to meet the defined quality goals,

as described in “Define Process to Meet Your Goals” on page 2-4.

 Sample Workflows for Polyspace Verification

2-13

5 Quality engineers perform verification on the code.
6 Quality engineers review red errors, gray code, and the number of orange checks

defined in the process.

Note: The number of orange checks reviewed often depends on the version of
software being tested (first, intermediate, or final delivery). This can be defined by
quality level (see “Define Broad Requirements for Verification”).

7 Quality engineers create reports documenting the results of the verification, and
communicate those results to the supplier.

8 Quality engineers repeat steps 5–7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other verification
processes, but the cost of correcting faults is higher, because verification takes place late
in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the cost of doing
so can be high. If you want to review all orange checks at this phase, it is important to
use development and verification processes that minimize the number of orange checks.
This includes:

• Developing code using strict coding and data rules.
• Providing accurate manual stubs for unresolved function calls.
• Using DRS to provide accurate data ranges for input variables.

Taking these steps will minimize the number of orange checks reported by the
verification, and make it more likely that remaining orange checks represent real issues
with the software.

Quality Engineers – Certification/Qualification

User Description

This workflow applies to quality engineers who work with applications requiring outside
quality certification, such as IEC 61508 certification or DO-178 qualification.

These users must perform a set of activities to meet certification requirements.

2 How to Use Polyspace Software

2-14

You can use the “IEC Certification Kit (for ISO 26262 and IEC 61508)” to help qualify
Polyspace products within an IEC 61508, ISO 26262, EN 50128, or other related
functional-safety standard certification environment.

You can use the “DO Qualification Kit (for DO-178)” to help qualify Polyspace products
within an DO-178 qualification environment.

Model-Based Design Users — Verifying Generated Code

User Description

This workflow applies to users who have adopted model-based design to generate code for
embedded application software.

These users generally use Polyspace software in combination with several other
MathWorks products, including Simulink®, Embedded Coder® , and Simulink Design
Verifier™ products. In many cases, these customers combine application components
that are manually written code with those created using generated code.

Quality

The goal of Polyspace verification is to improve the quality of the software by identifying
implementation issues in the code, and proving that the code is both semantically and
logically correct.

Polyspace verification allows you to find run-time errors:

• In hand-coded portions within the generated code
• In the model used for production code generation
• In the integration of manually written and generated code

Verification Workflow

The workflow is different for manually written code, generated code, and mixed code.
Polyspace products can perform code verification as part of any of these workflows. The
following figure shows a suggested verification workflow for manually written and mixed
code.

 Sample Workflows for Polyspace Verification

2-15

Executable
Specification

Textual
Requirements

Compilation
and Linking

Code
Generation

Textual
Requirements

Hand-written
Code

Generated
Code

Model Used
for Code

Generation

Module
Design

Object
Code

Application
Design

Modeling

Development Artifact

Software Development Activity

Code Analysis Code Verification

Code Analysis Code Verification

Verification of
C and C++ Code

Module Testing

Integration Testing

Workflow for Verification of Generated and Mixed Code

Note: Solid arrows in the figure indicate the progression of software development
activities.

The verification workflow consists of the following steps:

1 The project leader configures a Polyspace project to meet defined quality goals.
2 Developers manually code sections of the application.
3 Developers or testers perform Polyspace verification of manually coded sections

within the generated code, and review verification results according to the
established quality goals.

4 Developers create Simulink model based on requirements.

2 How to Use Polyspace Software

2-16

5 Developers validate model to prove it is logically correct (using tools such as
Simulink Model Advisor, and the Simulink Verification and Validation™ and
Simulink Design Verifier products).

6 Developers generate code from the model.
7 Developers or testers perform Polyspace verification on the entire software

component, including both manually written and generated code.
8 Developers or testers review verification results according to the established quality

goals.

Note: Polyspace Code Prover allows you to quickly track issues identified by the
verification back to the block in the Simulink model.

Costs and Benefits

Simulink Design Verifier verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows how errors in
textual designs or executable models can appear in the resulting code.

Examples of Common Run-Time Errors

Type of Error Design or Model Errors Code Errors

Arithmetic
errors

• Incorrect Scaling
• Unknown calibrations
• Untested data ranges

• Overflows/Underflows
• Division by zero
• Square root of negative numbers

Memory
corruption

• Incorrect array specification in state
machines

• Incorrect legacy code (look-up
tables)

• Out of bound array indexes
• Pointer arithmetic

Data
truncation

• Unexpected data flow • Overflows/Underflows
• Wrap-around

Logic errors • Unreachable states
• Incorrect Transitions

• Non initialized data
• Dead code

 Sample Workflows for Polyspace Verification

2-17

Project Managers — Integrating Polyspace Verification with Configuration
Management Tools

User Description

This workflow applies to project managers responsible for establishing check-in criteria
for code at different development stages.

Quality

The goal of Polyspace verification is to test that code meets established quality criteria
before being checked in at each development stage.

Verification Workflow

The verification workflow consists of the following steps:

1 Project manager defines quality goals, including individual quality levels for each
stage of the development cycle.

2 Project leader configures a Polyspace project to meet quality goals.
3 Developers or testers run verification at the following stages:

• Daily check-in — On the files currently under development. Compilation must
complete without the permissive option.

• Pre-unit test check-in — On the files currently under development.
• Pre-integration test check-in — On the whole project, ensuring that compilation

can complete without the permissive option. This stage differs from daily check-in
because link errors are highlighted.

• Pre-build for integration test check-in — On the whole project, with multitasking
aspects accounted for as required.

• Pre-peer review check-in — On the whole project, with multitasking aspects
accounted for as required.

4 Developers or testers review verification results for each check-in activity to confirm
the code meets the required quality level. For example, the transition criterion could
be: “No defect found in 20 minutes of selective orange review”

2-18

3

Setting Up Project: Basic Steps

• “What is a Project?” on page 3-2
• “What is a Project Template?” on page 3-3
• “Create New Project” on page 3-4
• “Add Source Files and Include Folders” on page 3-6
• “Specify Results Folder” on page 3-8
• “Specify Analysis Options” on page 3-10
• “Save Analysis Options as Project Template” on page 3-12
• “Specify External Text Editor” on page 3-15
• “Change Default Font Size” on page 3-17

3 Setting Up Project: Basic Steps

3-2

What is a Project?

In Polyspace software, a project is a named set of parameters for your software project's
source files. A project includes:

• Source files
• Include folders
• One or more configurations, specifying a set of analysis options
• One or more modules, each of which include:

• Source (specific set of source files)
• Configuration (specific set of analysis options)
• Results

Use the Project Manager perspective to create and modify a project.

 What is a Project Template?

3-3

What is a Project Template?

A Project Template is a predefined set of analysis options for a specific compilation
environment. When creating a new project, you have the option to:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as IAR,
Kiel, and VxWorks Aonix, Rational, and Greenhills. For additional templates,
see Polyspace Compiler Templates .

• Set analysis options manually. You can save your options to a custom template
and reuse them later. For more information, see “Save Analysis Options as Project
Template” .

http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

3 Setting Up Project: Basic Steps

3-4

Create New Project

This example shows how to create a new project in Polyspace Code Prover. Before you
create a project, you must know:

• Location of source files
• Location of include files
• Location where verification results will be stored

For these locations, it is convenient to create three subfolders under a common
project folder. For instance, under the folder polyspace_project, you can create
sources,includes and results.

1 Select File > New Project....
2 In the Project – Properties dialog box, enter the following information:

• Project name
• Location: Folder where you will store the project file with extension .psprj.

You can use this file to open an existing project.

The software assigns a default location to your project. You can change this
default on the Project and Results Folder tab in the Polyspace Preferences
dialog box.

• Project language

If you want to use a template, select the Use template check box. Then, click Next.
3 Select the template for your compiler. If your compiler does not appear in the list of

predefined templates, select Baseline. You can then start with a generic template.
Click Next.

4 Add source files and include folders to your project.

• Navigate to the location where you stored your source files. Select the source files
for your project. Click Add Source Files.

• The software automatically adds the standard include files to your project. To use
custom include files, navigate to the folder containing your include files. Click
Add Include Folders.

5 Click Finish.

The new project opens in the Project Browser.

 Create New Project

3-5

6 Save the project. Select File > Save or enter Ctrl+S.

Related Examples
• “Add Source Files and Include Folders”

More About
• “What is a Project?”

3 Setting Up Project: Basic Steps

3-6

Add Source Files and Include Folders

This example shows how to add source files and include folders to an existing project.

Add Sources and Includes

1 In the Project Browser, right-click your project or the Source or Include folder in
your project.

2 Select Add Source.
3 Add source files to your project.

• Navigate to the location where you stored your source files. Select each source
file. Click Add Source Files.

• To add all files in a folder and its subfolders, select the option Add recursively.
Select the folder. Click Add Source Files.

• To add all files in a folder but not in its subfolders, clear the option Add
recursively. Select the first file in the folder. Press the Shift key while selecting
the last file. Click Add Source Files.

• To add certain files in a folder, press the Ctrl key while selecting the files. Click
Add Source Files.

4 Add include folders to your project. The software adds standard include files to your
project. However, you must explicitly add folders containing your custom include
files.

• Navigate to the folder containing your include files. Select the folder and click
Add Include Folders.

• If you do not want to add subfolders of the folder, clear Add recursively. Select
the folder and click Add Include Folders.

5 Click Finish.
6 Before running a verification, you must copy the source files to a module.

a Select the source files that you want to copy. To select multiple files together,
press the Ctrl key while selecting the files.

b Right-click your selection.
c Select Copy to > Module_n. n is the module number.

 Add Source Files and Include Folders

3-7

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files
are compiled. When multiple include files by the same name exist in different folders, it
is convenient to change the order of include folders instead of reorganizing the contents
of your folders. For a particular include file name, the software includes the file in the
first include folder under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation, Folder_2/
include.h is included in preference to Folder_1/include.h.

To change the order of include folders:

1 In the Project Browser, expand the Include folder.
2 Select the include folder that you want to move.
3

To move the folder, click either or on the Project Browser toolbar.

Related Examples
• “Specify Results Folder”
• “Create New Project”

3 Setting Up Project: Basic Steps

3-8

Specify Results Folder

This example shows how to specify a results folder. By default, the software creates
a new results folder for each analysis. Before starting an analysis, you can choose to
overwrite an existing results folder. For example, if you stopped an analysis before
completion and want to restart it, you can overwrite a results folder.

• To create a new folder, in the Project Manager toolbar, select the Create new result
folder box.

• By default, the new folder is created in Project_folder / Module_name.
Project_folder is the project location you specified when creating a new project.

• You can also create a parent folder for storing your results. Select Tools >
Preferences and enter the parent folder location on the Project and Results
Folder tab. If you enter a parent folder location, any new result folder will be
created under this parent folder.

• To overwrite an existing folder that is open in the Project Browser, clear the
Create new result folder box. In the Overwrite result folder drop-down list,
select the folder that you want to use.

• To overwrite an existing folder not open in the Project Browser, right-click the
Result node. Select Choose a Result folder. Select the folder where you want your
results stored.

• To specify a results folder from the command line, use the -results-dir option,
followed by the full path to the folder inside " ".

 Specify Results Folder

3-9

When you start the verification, the software saves the results in the specified folder.

See Also
“-results-dir”

Related Examples
• “Customize Results Folder Location and Name”

3 Setting Up Project: Basic Steps

3-10

Specify Analysis Options

You can either retain the default analysis options used by the software or change them to
your requirements.

In this section...

“Specify Options in User Interface” on page 3-10
“Specify Options from DOS and UNIX Command Line” on page 3-11
“Specify Options from MATLAB Command Line” on page 3-11

Specify Options in User Interface

In the Polyspace Project Manager perspective, use the Configuration pane.

For instance:

• To specify the target processor, select Target & Compiler in the Configuration
tree view. Select your processor from the Target processor type drop-down list.

• To specify verification precision, select under the Code Prover Verification node,
select Precision. Select a number for Precision level.

 Specify Analysis Options

3-11

Specify Options from DOS and UNIX Command Line

At the DOS or UNIX® command-line, append analysis options to the polyspace-code-
prover-nodesktop command. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-code-prover-nodesktop -sources "file.c" -lang c -target m68k

• To specify verification precision, use the -O option. For instance, to set precision level
to 2 for your source file file.c, use the command:

polyspace-code-prover-nodesktop -sources "file.c" -lang c -O2

Specify Options from MATLAB Command Line

At the MATLAB® command-line, enter analysis options and their values as string
arguments to the polyspaceCodeProver function. For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, enter:

polyspaceCodeProver('-sources','file.c','-lang','c','-target','m68k')

• To specify verification precision, use the -O option. For instance, to set precision level
to 2 for your source file file.c, enter:

polyspaceCodeProver('-sources','file.c','-lang','c','-O2')

See Also
“polyspaceCodeProver”

Related Examples
• “Save Analysis Options as Project Template”

More About
• “Analysis Options for C Code”
• “Analysis Options for C++ Code”

3 Setting Up Project: Basic Steps

3-12

Save Analysis Options as Project Template

This example shows how to save analysis options for use in other projects. Once you have
configured analysis options for a project, you can save the configuration as a Project
Template. You can use this saved configuration to automatically set up analysis options
for other projects.

• To create a Project Template from an open project:

1 Right-click the configuration that you want to use, and then select Save As
Template.

2 Enter a description for the template, then click Proceed. Save your Template
file.

• When you create a new project, to use a saved template:

1 Under Project configuration, check the Use template box. Click Next.

 Save Analysis Options as Project Template

3-13

2
Select . Navigate to the template that you saved
earlier, and then click Open. The new template appears in the Custom
templates folder on the Templates browser. Select the template for use.

3 Setting Up Project: Basic Steps

3-14

Related Examples
• “Specify Analysis Options”

More About
• “What is a Project Template?”
• “Analysis Options for C Code”
• “Analysis Options for C++ Code”

 Specify External Text Editor

3-15

Specify External Text Editor

This example shows how to change the default text editor for opening source files from
the Polyspace interface. By default, if you open your source file from the user interface, it
opens on a Code Editor tab. If you prefer editing your source files in an external editor,
you can change this default behavior.

1 Select Tools > Preferences.
2 On the Polyspace Preferences dialog box, select the Editors tab.
3 From the Text editor drop-down list, select External.
4 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 To make sure that your source code opens at the correct line and column in your
text editor, specify command-line arguments for the editor using Polyspace macros,
$FILE, $LINE and $COLUMN. Once you specify the arguments, when you right-click
a check on the Results Summary pane and select Open Source File, your source
code opens at the location of the check.

Polyspace has already specified the command-line arguments for the following
editors:

• Emacs

• Notepad++ — Windows® only
• UltraEdit

• VisualStudio

• WordPad — Windows only
• gVim

If you are using one of these editors, select it from the Arguments drop-down list. If
you are using another text editor, select Custom from the drop-down list, and enter
the command-line options in the field provided.

6 To revert back to the built-in editor, on the Editors tab, from the Text editor drop-
down list, select Built In.

For console-based text editors, you must create a terminal. For example, to specify vi:

1 In the Text Editor field, enter /usr/bin/xterm.

3 Setting Up Project: Basic Steps

3-16

2 From the Arguments drop-down list, select Custom.
3 In the field to the right, enter -e /usr/bin/vi $FILE.

 Change Default Font Size

3-17

Change Default Font Size

This example shows how to change the default font size in the Polyspace user interface.

1 Select Tools > Preferences.
2 On the Miscellaneous tab:

• To increase the font size of labels on the user interface, select a value for GUI
font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor

pane, select a value for Source code font size.
3 Click OK.

When you restart Polyspace, you see the increased font size.

3-18

4

Setting Up Project : Advanced Steps

• “Create Projects Automatically from Your Build System” on page 4-2
• “Requirements for Project Creation from Build Systems” on page 4-6
• “Your Compiler Is Not Supported” on page 4-8
• “Create Multiple Modules” on page 4-11
• “Create Multiple Analysis Option Configurations” on page 4-12
• “Customize Results Folder Location and Name” on page 4-13
• “Define Broad Requirements for Verification” on page 4-14
• “Define Specific Requirements for Verification” on page 4-16
• “Provide Context for C Code Verification” on page 4-18
• “Provide Context for C++ Code Verification” on page 4-20

4 Setting Up Project : Advanced Steps

4-2

Create Projects Automatically from Your Build System

In this section...

“Create Project in User Interface” on page 4-2
“Create Project from DOS and UNIX Command Line” on page 4-4
“Create Project from MATLAB Command Line” on page 4-4

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & Compiler options.

Note: In the Polyspace interface, it is possible that the created project will not show
implicit defines or includes. The configuration tool does include them. However, they are
not visible.

Create Project in User Interface

1 Select File > New Project.
2 On the Project – Properties dialog box, under Project Configuration, select

Create from build command.
3 On the next window, enter the following information:

Field Description

Specify command
used for building
your source files

If you use an IDE such as Visual Studio® or Eclipse™
to build your project, specify the full path to your IDE

executable or navigate to it using the button. For a
tutorial using Visual Studio, see “Trace Visual Studio Build”.

Example: "C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Common7\IDE\VCExpress.exe"

 Create Projects Automatically from Your Build System

4-3

Field Description

If you use command-line tools to build your project, specify
the appropriate command.

Example:

• "C:\cygwin64\usr\bin\make.exe"

• make -B -f makefileName

Specify working
directory for
running build
command

Specify the folder from which you run your build automation
script.

If you specify the full path to your executable in the previous
field, this field is redundant. Specify any folder.

Add advanced
configuration
options

Specify additional options for advanced tasks such as
incremental build. For the full list of options, see the -
options value argument for polyspaceConfigure.

4
Click .

• If you entered your build command, Polyspace runs the command and sets up a
project.

• If you entered the path to an executable, the executable runs. Build your source
code and close the executable. Polyspace traces your build and sets up a project.

For example, in Visual Studio 2010, use Tools > Rebuild Solution to build your
source code. Then close Visual Studio.

5 If you updated your build command, you can recreate the Polyspace project from the
updated command. To recreate an existing project, on the Project Browser, right-
click the project name and select Update Project.

Note: If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

4 Setting Up Project : Advanced Steps

4-4

Create Project from DOS and UNIX Command Line

Use the polyspace-configure command to trace your build automation scripts. You
can use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspace-configure -prog myProject make -B targetName buildOptions

• Create an options file. You can then use the options file to run verification on your
source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspace-configure -no-project -output-options-file myOptions ...

 make -B targetName buildOptions

Use the options file to run verification:

polyspace-code-prover-nodesktop -options-file myOptions

For more information on advanced options for polyspace-configure, see the -
options value argument for polyspaceConfigure.

Create Project from MATLAB Command Line

Use the polyspaceConfigure command to trace your build automation scripts. You can
use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspaceConfigure -prog myProject ...

 make -B targetName buildOptions

 Create Projects Automatically from Your Build System

4-5

• Create an options file. You can then use the options file to run verification on your
source code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspaceConfigure -no-project -output-options-file myOptions ...

 make -B targetName buildOptions

Use the options file to run verification:

polyspaceCodeProver -options-file myOptions

For more information, see polyspaceConfigure.

Related Examples
• “Trace Visual Studio Build”

More About
• “Requirements for Project Creation from Build Systems”
• “Your Compiler Is Not Supported”

4 Setting Up Project : Advanced Steps

4-6

Requirements for Project Creation from Build Systems

For polyspace-configure to correctly trace your build and gather all your source files:

• Your compiler must be called locally for a clean build.
• Your compiler configuration must be available to Polyspace. The compilers currently

supported are:

• Visual C++® compiler
• gcc

• clang

• MinGW compiler
• IAR compiler

If your compiler does not meet these requirements, try the following:

• If your compiler performs only an incremental build, use appropriate options to build
all your source files. For example, if you use gmake, append the -B option to force a
clean build.

• If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file in a specific format. For more information, see
“Your Compiler Is Not Supported”.

• Contact MathWorks Technical Support. For more information, see “Obtain System
Information for Technical Support”.

• If you use a compiler cache such as ccache or a distributed build system such as
distmake, polyspace-configure cannot trace your build. You must deactivate
them.

• If you use Cygwin™ to build your source code, polyspace-configure cannot trace
your build. Use MinGW to build your source and have polyspace-configure trace
your build, or do the following:

1 Build your source code using the process that you usually follow. Copy the
commands that executed during the build.

For instance, on make systems, use the flag -B to build your entire source and -n
to view the commands. For more information, see make options.

http://www.mathworks.com/support/?s_tid=gn_supp
http://www.mingw.org/
http://www.gnu.org/software/make/manual/make.html#Options-Summary

 Requirements for Project Creation from Build Systems

4-7

2 Enter the commands in a Windows batch file. A batch file is a file that can
contain one or more commands. It has a .bat extension. For more information,
see batch files.

3 Run the batch file to make sure your build commands work.

If your batch file is called myBuild.bat, at a DOS command prompt, enter:

cmd.exe /C myBuild.bat

4 Run polyspace-configure on the batch file.

If you ran the command in the previous step, at a DOS command prompt, enter:

polyspace-configure cmd.exe /C myBuild.bat

See Also
“polyspaceConfigure”

Related Examples
• “Create Projects Automatically from Your Build System”

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/batch.mspx?mfr=true

4 Setting Up Project : Advanced Steps

4-8

Your Compiler Is Not Supported

For polyspaceConfigure to correctly trace your build and gather your source
files, your compiler configuration must be available to Polyspace. For information on
supported compilers, see “Requirements for Project Creation from Build Systems”. If your
compiler is not supported, you can write your own compiler configuration file to enable
support.

1 Copy one of the existing configuration files from matlabroot\polyspace
\configure\compiler_configuration\.

2 Save the file as my_compiler.xml. my_compiler can be any name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished
editing, you must copy the file back to matlabroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

The following table lists the XML elements in the file with a description of what the
content within the element represents.

XML Element Content Description Content
Example

for GNU® C
Compiler

<compiler_names><name> ... </

name><compiler_names>

Name of the compiler
executable. This
executable transforms
your .c files into
object files. You can
add several binary
names, each in a
separate <name>...</
name> element.
polyspaceConfigure

checks for each of the
provided names and
uses the compiler name

• gcc

• gpp

 Your Compiler Is Not Supported

4-9

XML Element Content Description Content
Example

for GNU® C
Compiler

for which it finds a
match.

You must not specify
the linker binary inside
the <name>...</
name> elements.

<include_options><opt> ... </opt></

include_options>

The option that you use
with your compiler to
specify include folders.

-I

<system_include_options><opt> ...

</opt></system_include_options>

The option that you use
with your compiler to
specify system headers.

-isystem

<preinclude_options><opt> ... </

opt></preinclude_options>

The option that you use
with your compiler to
force inclusion of a file
in the compiled object.

-include

<define_options><opt> ... </opt></

define_options>

The option that you use
with your compiler to
predefine a macro.

-D

<undefine_options><opt> ... </

opt></undefine_options>

The option that you
use with your compiler
to undo any previous
definition of a macro.

-U

<semantic_options><opt> ... </

opt></semantic_options>

The options that you
use to modify the
compiler behavior.
These options specify
the language settings
to which the code must
conform.

• -ansi

• -std

=C90

• -std

=c++11

• -fun

signed

-char

4 Setting Up Project : Advanced Steps

4-10

XML Element Content Description Content
Example

for GNU® C
Compiler

<dialect> ... </dialect> The options that specify
the Polyspace dialect
used by your compiler.
For the complete
list of dialects, on
the Configuration
pane, select Target &
Compiler.

gnu4.7

<preprocess_options_list><opt> ...

</opt></preprocess_options_list>

The options that
specify how your
compiler generates a
preprocessed file.

-E

<src_extensions><ext> ... </ext></

src_extensions>

The file extensions for
source files.

• c

• cpp

• c++

<obj_extensions><ext> ... </ext></

obj_extensions>

The file extensions for
object files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

4 After saving the edited XML file to matlabroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command. For more information, see:

• “Create Project in User Interface”
• “Create Project from DOS and UNIX Command Line”
• “Create Project from MATLAB Command Line”

 Create Multiple Modules

4-11

Create Multiple Modules

This example shows how to create multiple modules in a Polyspace Code Prover project.
With each of these modules, you can analyze a specific set of source files using a specific
set of analysis options. When you create a module, the software creates a project
configuration with default option values. You can modify these values. In addition, you
can create multiple configurations in each module, allowing you to change analysis
options each time you run an analysis.

1 In the Project Browser, select your project.
2

On the Project Browser toolbar, click .

You see a second module, Module_2, in the Project Browser tree.
3 In the project Source folder, right-click the files that you want to add to the module.

From the context menu, select Copy to > Module_2.

The software displays these files in the Source folder of Module_2.

If you have twenty or more modules in your project, when you select Copy to, the
Select Modules dialog box opens. From the module list, choose the required modules.
Then click Select.

Note: You can also drag source files from a project into the Source folder of a module.

Related Examples
• “Create Multiple Analysis Option Configurations”

4 Setting Up Project : Advanced Steps

4-12

Create Multiple Analysis Option Configurations

This example shows how to create and use multiple configurations in your Polyspace
project. Each of these configurations specifies a specific set of analysis options. Using
multiple configurations allows you to analyze a set of source files multiple times using
different analysis options for each run.

1 In the Project Browser, select a module.
2 Right-click the Configuration folder in the module. From the context menu, select

Create New Configuration.

• On the Project Browser, the software displays a new configuration
project_name_1. To rename the configuration, double-click it.

• On the Configuration pane, the new configuration appears as an additional tab.
3 On the Configuration pane, specify the analysis options for the new configuration.
4 To use this new configuration for the verification, right-click the configuration. Select

Set as Default.

The default configuration appears blue. When you run a new verification, it uses the
default configuration.

5 To see the configuration you used for a certain result, right-click the result on the
Project Browser. Select Open Configuration.

If you are viewing the results in the Results Manager, to see the configuration you
used, select Window > Show/Hide View > Settings.

6 To copy a configuration to another module, right-click the configuration. Select Copy
Configuration to > Module_name.

Related Examples
• “Create Multiple Modules”

More About
• “Analysis Options for C Code”

 Customize Results Folder Location and Name

4-13

Customize Results Folder Location and Name

By default, the software saves results in Module_# subfolders within the project folder.
However, through the Polyspace Preferences dialog box, you can define a parent folder
for your results:

1 From the Polyspace toolbar, select Tools > Preferences.
2 On the Project and Results Folder tab, select the Create new result folder

check box.
3 In the Parent results folder location field, specify the location that you want.

Note: If you do not specify a parent results folder, the software uses the active
module folder as the parent folder.

4 If you require a subfolder, select the Add a subfolder using the project name
check box. This subfolder takes the name of the project.

5 If required, specify additional formatting options for the folder name . The options
allow you to incorporate the following information into the name of the results folder:

• Result folder prefix — A string that you define. Default is Result.
• Project variable — Project, module, and configuration.
• Date format — Date of analysis
• Time format — Time of analysis
• Counter — Count value that automatically increments by one for each new

results folder

The software now creates a new results folders with the file name
ResultFolderPrefix_ProjectVariable_DateFormat_TimeFormat_Counter.

4 Setting Up Project : Advanced Steps

4-14

Define Broad Requirements for Verification

This example shows how to define your broad requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

1 Prepare a set of quality levels for your application. A quality level chart can be like
this:

Software Quality Levels

Software Quality LevelsCriteria

QL1 QL2 QL3 QL4

Document static information X X X X
Enforce MISRA C coding rules in SQO-
subset1

X X X X

Review all red checks X X X X
Review all gray checks X X X X
Review critical orange checks X X X
Review all orange checks X X
Enforce MISRA C coding rules in SQO-
subset2

 X X

Analyze dataflow X X

2 Depending on the quality level that you want to implement, choose your verification
options. The options appear on the Configuration pane in the Project Manager
perspective.

For instance, if you want to implement level QL1, under Coding Rules, select SQO-
subset1 for Check MISRA C:2004.

3 Depending on the quality level that you want to implement, plan your review process
for the verification results. Your review process involves options in the Result
Manager perspective.

 Define Broad Requirements for Verification

4-15

For instance, if you want to implement level QL1, on the Results Summary pane,
filter only red and gray checks.

Related Examples
• “Define Specific Requirements for Verification”
• “Organize Results Using Filters and Groups”

4 Setting Up Project : Advanced Steps

4-16

Define Specific Requirements for Verification

This example shows how to define specific requirements before you begin a Polyspace
Code Prover verification, and then implement them in your verification process.

Specify Code Constructs

1 Prepare a list of constructs that you want to retain in your code or remove from it.
2 On the Configuration pane, specify the verification options corresponding to your

requirements.

For instance, you can have the following requirements and choose the corresponding
options.

Requirement Option

Detect overflows only on signed integer
computations.

Under Check Behavior, for Detect
overflows, select signed.

Allow a pointer to one structure field
to point to another field of the same
structure.

Under Check Behavior, select Enable
pointer arithmetic across fields.

Do not allow global variables to be
initialized by default.

Under Inputs & Stubbing, select
Ignore default initialization of
global variables.

Specify Coding Rules

1 Prepare a list of coding rules for your code.
2 On the Configuration pane, under the Coding Rules node, specify your coding

rules.

Requirement Example

Select predefined rule subsets. “Activate Coding Rules Checker”
Create your own subset from existing
rules.

“Select Specific MISRA or JSF Coding
Rules”

Create your own coding rules. “Create Custom Coding Rules”

 Define Specific Requirements for Verification

4-17

Specify Results to Review

1 Prepare a list of files or list of checks that you want to review.
2 After you run your verification, apply appropriate filters to focus your review to

those files or checks. For more information, see “Organize Results Using Filters and
Groups”.

Related Examples
• “Define Broad Requirements for Verification”
• “Specify Analysis Options”
• “Save Analysis Options as Project Template”

4 Setting Up Project : Advanced Steps

4-18

Provide Context for C Code Verification

This example shows how to provide context for your C code verification. If you use default
options and do not provide a main function, Polyspace Code Prover:

• Considers that global variables and function inputs are full range.
• Generates a main that calls uncalled functions in arbitrary order.

In addition, if you do not define a function but declare and call it in your code, Polyspace
stubs the function.

You can use analysis options on the Configuration pane to change this default behavior
and provide more context about your code.

Control Variable Range

Use the following options. The options appear under the Code Prover Verification
node.

Option Purpose

“Variables to initialize (C)” Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

“Variable/function range setup (C/C++)” Specify range for global variables.

Control Function Call Sequence

Use the following options. The options appear under the Code Prover Verification
node.

Option Purpose

“Initialization functions (C)” Specify the functions that the generated
main must call first.

“Functions to call (C)” Specify the functions that the generated
main must call later.

Control Stubbing Behavior

Use the following options. The options appear under the Inputs & Stubbing node.

 Provide Context for C Code Verification

4-19

Option Purpose

“No automatic stubbing (C/C++)” Specify that verification must stop if a
function is not defined in the source files.

“Functions to stub (C)” Specify the functions that Polyspace must
stub.

Related Examples
• “Provide Context for C++ Code Verification”
• “Specify Analysis Options”
• “Save Analysis Options as Project Template”

4 Setting Up Project : Advanced Steps

4-20

Provide Context for C++ Code Verification

This example shows how to provide context to your C++ code verification. If you use
default options and do not provide a main function, Polyspace Code Prover:

• Considers that global variables and function inputs are full range.
• Generates a main that calls uncalled class methods and other functions in arbitrary

order.

In addition, if you do not define a function or method but declare and call it in your code,
Polyspace stubs the function.

You can use analysis options on the Configuration pane to change this default behavior
and provide more context about your code.

Control Variable Range

Use the following options. The options appear under the Code Prover Verification
node.

Option Purpose

“Variables to initialize (C++)” Specify the global variables that Polyspace
must consider as initialized despite no
explicit initialization in the code.

“Variable/function range setup (C/C++)” Specify range for global variables.

Control Function Call Sequence

1 Use the following options to call class methods. The options appear under the Code
Prover Verification node.

Option Purpose

“Class (C++)” Specify classes whose methods the
generated main must call.

“Functions to call within the specified
classes (C++)”

Specify methods that the generated main
must call.

“Analyze class contents only (C++)” Specify that the generated main must
call class methods only.

 Provide Context for C++ Code Verification

4-21

Option Purpose

“Skip member initialization check (C++)” Specify that the generated main must
not check whether each class constructor
initializes all class members.

2 Use the following options to call functions that are not class methods. The options
appear under the Code Prover Verification node.

Option Purpose

“Initialization functions (C++)” Specify the functions that the generated
main must call first.

“Functions to call (C++)” Specify the functions that the generated
main must call later.

Control Stubbing Behavior

Use the following options. The options appear under the Inputs & Stubbing node.

Option Purpose

“No automatic stubbing (C/C++)” Specify that verification must stop if a
function is not defined in the source files.

“No STL stubs (C++)” Specify that the verification must not use
Polyspace implementations of the standard
template library.

“Functions to stub (C)” Specify the functions that Polyspace must
stub.

Related Examples
• “Provide Context for C Code Verification”
• “Specify Analysis Options”
• “Save Analysis Options as Project Template”

4-22

5

Setting Up Project: Additional
Information

• “Create Projects Using Visual Studio Information” on page 5-2
• “Cannot create project from Visual Studio build” on page 5-6
• “Storage of Polyspace Preferences” on page 5-7

5 Setting Up Project: Additional Information

5-2

Create Projects Using Visual Studio Information

In this section...

“Use Visual Studio Project” on page 5-2
“Trace Visual Studio Build” on page 5-2

Use Visual Studio Project

You can directly create a Polyspace project from a Visual Studio project file with
extension .vcproj. The Visual Studio import retrieves the following information from a
Visual Studio project:

• Source files
• Include folders
• Some Target & Compiler options
• Preprocessor Macros

Note: For Visual Studio 2010 or Visual Studio 2012, you cannot directly import your
project.

1 In the Project Manager perspective, select File > Import Visual Studio Project.
2 In the Import Visual Studio dialog box, specify the Visual Studio project that you

want to use.
3 You can:

• Create new Polyspace project: Enter full path to a new Polyspace project.
• Update existing Polyspace project: The dropdown list contains all projects

currently open in the Project Browser. Select the project you want to update.
4 Click Import.

Trace Visual Studio Build

To create a Polyspace project, you can trace your Visual Studio build. For Polyspace to
correctly trace your Visual Studio build, you must install both x86 and x64 versions of
the Visual C++ Redistributable for Visual Studio 2012 from this address.

http://www.microsoft.com/en-us/download/details.aspx?id=30679

 Create Projects Using Visual Studio Information

5-3

1 In the Polyspace Project Manager, select File > New Project.
2 In the Project – Properties window, enter your project information.

a Choose C++ as Project Language.
b Under Project Configuration, select Create from build command and click

Next.

5 Setting Up Project: Additional Information

5-4

3 In the field Specify command used for building your source files, enter the
full path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

 Create Projects Using Visual Studio Information

5-5

4 In the field Specify working directory for running build command, enter C:\.

Click .

This action opens the Visual Studio environment.
5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

Related Examples
• “Visual Studio Verification”

More About
• “Cannot create project from Visual Studio build”

5 Setting Up Project: Additional Information

5-6

Cannot create project from Visual Studio build

If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

 Storage of Polyspace Preferences

5-7

Storage of Polyspace Preferences

The software stores the settings that you specify through the Polyspace Preferences
dialog box in the following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB
\$Release\Polyspace\polyspace.prf

• Linux®: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username such as johndoe and $Release is the release number such as 2014b.

The following file stores the location of all installed Polyspace products across various
releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks
\MATLAB \AppData\Roaming\MathWorks\MATLAB \polyspace_shared

\polyspace_products.prf

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

5-8

6

Emulating Your Runtime Environment

• “Set Up a Target” on page 6-2
• “Supported C++ 2011 Standards” on page 6-30
• “Verify C Application Without a “Main”” on page 6-34
• “Polyspace C++ Class Analyzer” on page 6-38
• “Data Range Specifications” on page 6-52
• “Create Data Range Specification Template” on page 6-53
• “Specify Data Ranges Using Existing Template” on page 6-55
• “Edit Existing DRS Template” on page 6-56
• “Remove Non Applicable Entries from DRS Template” on page 6-57
• “Specify Data Ranges Using Text Files” on page 6-58
• “Perform Efficient Module Testing with DRS” on page 6-61
• “Reduce Oranges with DRS” on page 6-63
• “DRS Configuration Settings” on page 6-66
• “Variable Scope” on page 6-71
• “XML Format of DRS File” on page 6-75

6 Emulating Your Runtime Environment

6-2

Set Up a Target

In this section...

“Target & Compiler Overview” on page 6-2
“Specify Target and Compiler” on page 6-2
“Modify Predefined Target Processor Attributes” on page 6-3
“Define Generic Target Processors” on page 6-3
“Common Generic Targets” on page 6-5
“View or Modify Existing Generic Targets” on page 6-6
“Delete Generic Target” on page 6-8
“Compile Operating System Dependent Code” on page 6-10
“Address Alignment” on page 6-17
“Ignore or Replace Keywords Before Compilation” on page 6-18
“Language Extensions” on page 6-20
“Verify Keil or IAR Dialects” on page 6-21
“Gather Compilation Options Efficiently” on page 6-28

Target & Compiler Overview

Many applications are designed to run on specific target CPUs and operating systems.
The type of CPU determines many data characteristics, such as data sizes and
addressing. These factors can determine whether errors occur, for example, overflows.

Since some run-time errors are dependent on the target CPU and operating system,
you must specify the type of CPU and operating system used in the target environment
before running a verification.

Specify Target and Compiler

Before verification, you can specify the target environment and compiler behavior for
your application.

For example, to specify the target environment for your application:

 Set Up a Target

6-3

1 On the Configuration pane, select Target & Compiler.
2 For Target operating system, select the operating system on which your

application is designed to run.
3 For Target processor type, select the processor on which your application is

designed to run.

For detailed specification of each predefined target processor, see “Target processor
type (C)” or “Target processor type (C++)”.

Modify Predefined Target Processor Attributes

If your processor is not listed under Target processor type, you can select a similar
processor and modify its characteristics to match your processor. For the settings that
you can modify for each target, see the values listed in [] on “Target processor type (C)”
or “Target processor type (C++)”.

1 On the Configuration pane, select Target & Compiler.
2 For Target processor type, select the target processor that you want to use.
3 To the right of the Target processor type field, click Edit.
4 Modify the attributes as required.

Define Generic Target Processors

If your application is designed for a custom target processor, you can specify its
attributes.

1 On the Configuration pane, select Target & Compiler.
2 For Target processor type, select mcpu... (Advanced).

The Generic target options dialog box opens.

6 Emulating Your Runtime Environment

6-4

3 Enter a target name, for example, my_target.
4 Specify the parameters for your target, such as the size of basic types, and alignment

with arrays and structures.

 Set Up a Target

6-5

For example, when the alignment of basic types within an array or structure is 8, the
storage assigned to arrays and structures is determined by the size of the individual
data objects (without fields and end padding).

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big
alignment8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big
alignment8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big
alignment8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/ 32 32 64 32 64 64 32 unsigned Big

6 Emulating Your Runtime Environment

6-6

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

alignment8 16 32/ 16 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

View or Modify Existing Generic Targets

To view or modify generic targets that you previously created:

1 On the Configuration pane, select Target & Compiler.
2 For Target processor type, select your target, for example, MyTarget.
3 Click Edit. The Generic target options dialog box opens, displaying your target

attributes.

 Set Up a Target

6-7

4 If required, specify new attributes for your target. Then click Save.
5 Otherwise, click Cancel.

6 Emulating Your Runtime Environment

6-8

Delete Generic Target

To delete a generic target:

1 On the Configuration pane, select Target & Compiler.
2 For Target processor type, select the target that you want to remove, for example,

my_target.

 Set Up a Target

6-9

3 Click Remove. The software removes the target from the list.

6 Emulating Your Runtime Environment

6-10

Compile Operating System Dependent Code

• “Predefined Compilation Flags for C Code” on page 6-10
• “Predefined Compilation Flags for C++ Code” on page 6-12
• “My Target Application Runs on Linux” on page 6-16
• “My Target Application Runs on Solaris” on page 6-16
• “My Target Application Runs on Vxworks” on page 6-17
• “My Target Application Does Not Run on Linux, VxWorks, or Solaris” on page

6-17

Predefined Compilation Flags for C Code

If you choose a value for Target operation system, before verification, Polyspace
automatically:

• Defines certain compilation flags.
• Includes certain header files.

Target operating
system

Compilation flags —include file and content

no-predefined-OS -D__STDC__
Visual -D__STDC__ -include <product_dir>/cinclude/pst-

visual.h

VxWorks -D__STDC__

-DANSI_PROTOTYPES

-DSTATIC=

-DCONST=const

-D__GNUC__=2

-Dunix

-D__unix

-D__unix__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4__

-include <product_dir>/cinclude/pst-

vxworks.h

 Set Up a Target

6-11

Target operating
system

Compilation flags —include file and content

-D__SVR4

Linux -D__STDC__

-D__GNUC__=2

-D__GNUC_MINOR__=6

-D__GNUC__=2

-D__GNUC_MINOR__=6

-D__ELF__

-Dunix

-D__unix

-D__unix__

-Dlinux

-D__linux

-D__linux__

-Di386

-D__i386

-D__i386__

-Di686

-D__i686

-D__i686__

-Dpentiumpro

-D__pentiumpro

-D__pentiumpro__

<product_dir>/cinclude/pst-linux.h

6 Emulating Your Runtime Environment

6-12

Target operating
system

Compilation flags —include file and content

Solaris -D__STDC__

-D__GNUC__=2

-D__GNUC_MINOR__=8

-D__GNUC__=2

-D__GNUC_MINOR__=8

-

D__GCC_NEW_VARARGS__

-Dunix

-D__unix

-D__unix__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4__

-D__SVR4

No -include file mentioned

Note: The use of the -OS-target option is equivalent to the following approaches:

• Setting the same -D flags manually

• Using the -include option on a copied and modified pst-OS-target.h file

Predefined Compilation Flags for C++ Code

The following table shown for each —OS-target, the list of compilation flags defined by
default, including pre-include header file (see also –include):

Target
operating
system

Compilation flags -include file Minimum set of options

Linux -

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

<product_dir>/

cinclude/

pst-linux.h

polyspace-[desktop-]cpp -

OS-target Linux \

 Set Up a Target

6-13

Target
operating
system

Compilation flags -include file Minimum set of options

-D__inline__=inline

-D__signed__=signed

-

D__gnuc_va_list=va_list

-D__STL_CLASS_PARTIAL_

SPECIALIZATION

-D__GNU_SOURCE

-D__STDC__ -D__ELF__

-Dunix -D__unix

-D__unix__ -Dlinux

-D__linux -D__linux__

-Di386 -D__i386

-D__i386__ -Di686

-D__i686 -D__i686__

-Dpentiumpro

-D__pentiumpro

-D__pentiumpro__

-I <polyspace_install>/

include/ include-linux \

-I <product_dir>/include/

include-linux/next

Where the Polyspace product
has been installed in the folder
<polyspace_install>

6 Emulating Your Runtime Environment

6-14

Target
operating
system

Compilation flags -include file Minimum set of options

VxWorks -

D__SIZE_TYPE__=unsigned

-D__PTRDIFF_TYPE__=int

-D__inline__=inline

-D__signed__=signed

-

D__gnuc_va_list=va_list

-D__STL_CLASS_PARTIAL_

SPECIALIZATION

-DANSI_PROTOTYPES

-DSTATIC=

-DCONST=const

-D__STDC

-D__GNU_SOURCE

-Dunix

-D__unix

-D__unux__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4

-D__SVR4

<product_dir>/

cinclude/

pstvxworks. h

polyspace-[desktop-]cpp

\ -OS-target vxworks

\ -I /your_path_to/

Vxworks_include_folders

 Set Up a Target

6-15

Target
operating
system

Compilation flags -include file Minimum set of options

Visual -
D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-
D__STL_CLASS_PARTIAL_
SPECIALIZATION

<product_dir>/

cinclude/

pstvisual. h

Solaris -
D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-
D__STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC
-
D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4
-D__SVR4

If Polyspace runs on a Linux
machine:

polyspace-[desktop-]cpp \

-OS-target Solaris \

-I /

your_path_to_solaris_include

If Polyspace runs on a Solaris
machine:

polyspace-code-prover-

nodesktop -lang cpp\

-OS-target Solaris \

-I /usr/include

6 Emulating Your Runtime Environment

6-16

Target
operating
system

Compilation flags -include file Minimum set of options

no-

predefined-

OS

-
D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-
D__STL_CLASS_PARTIAL_
SPECIALIZATION

polyspace-[desktop-]cpp \

-OS-target no-predefined-OS

\

-I /your_path_to/

MyTarget_include_folders

Note: This list of compiler flags is written in every log file.

My Target Application Runs on Linux

The minimum set of options is as follows:

polyspace-code-prover-nodesktop \

 -OS-target Linux \

 -I MATLAB_Install/polyspace/verifier/cxx/include/include-libc \

 ...

If your target application runs on Linux but you are starting your verification from
Windows, the minimum set of options is as follows:

polyspace-code-prover-nodesktop \

 -OS-target Linux \

 -I MATLAB_Install\polyspace\verifier\cxx\include\include-libc \

 ...

MATLAB_Install is your MATLAB installation folder.

My Target Application Runs on Solaris

If Polyspace software runs on a Linux machine:

 Set Up a Target

6-17

polyspace-code-prover-nodesktop \

 -OS-target Solaris \

 -I /your_path_to_solaris_include

My Target Application Runs on Vxworks

If Polyspace software runs on either a Solaris™ or a Linux machine:

polyspace-code-prover-nodesktop \

 -OS-target vxworks \

 -I /your_path_to/Vxworks_include_folders

My Target Application Does Not Run on Linux, VxWorks, or Solaris

If Polyspace software does not run on a Linux machine:

polyspace-code-prover-nodesktop \

 -OS-target no-predefined-OS \

 -I /your_path_to/MyTarget_include_folders

Address Alignment

Polyspace software handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard which
ensure that:

• Global sizeof and offsetof fields are optimum, that is, as short as possible.
• The alignment of addressable units is respected.
• Global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be a multiple of
its own size2

• So in the example, char a begins at offset 0 and its size is 8 bits. int b cannot begin
at 8 (the end of the previous field) because the starting offset must be a multiple of its
own size (32 bits). Consequently, int b begins at offset=32. The size of the struct
foo before global alignment is therefore 64 bits.

2. except in the cases of “double” and “long” on some targets.

6 Emulating Your Runtime Environment

6-18

• The global alignment of a structure is the maximum of the individual alignments of
each of its fields;

• In the example, global_alignment = max (alignment char a, alignment
int b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case, b
begins at 32 and is 32 long, and the size of the struct (64) is a multiple of the
global_alignment (32), so sizeof is not adjusted.

Ignore or Replace Keywords Before Compilation

You can ignore noncompliant keywords, for example, far or 0x, which precede an
absolute address. The template myTpl.pl allows you to ignore these keywords.

1 Save the template as C:\Polyspace\myTpl.pl.

Content of myTpl.pl
#!/usr/bin/perl

##

Post Processing template script

#

##

Usage from Project Manager GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Windows: MATLAB_Install\sys\perl\win32\bin\perl.exe <pathtoscript>\

PostProcessingTemplate.pl

#

##

$version = 0.1;

$INFILE = STDIN;

$OUTFILE = STDOUT;

while (<$INFILE>)

{

 # Remove far keyword

 s/far//;

 Perl Regular Expressions

6-19

 # Remove "@ 0xFE1" address constructs

 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs

 # s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs

 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # Convert current line to lower case

$_ =~ tr/A-Z/a-z/;

 # Print the current processed line

 print $OUTFILE $_;

}

For reference, see a summary of Perl regular expressions.

Perl Regular Expressions

###

Metacharacter What it matches

###

Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[^a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as [^0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

#

Whitespace Characters

\s Whitespace character

\S Non-whitespace character

\n newline

\r return

\t tab

\f formfeed

\b backspace

#

6 Emulating Your Runtime Environment

6-20

Anchored Characters

\B word boundary when no inside []

\B non-word boundary

^ Matches to beginning of line

$ Matches to end of line

#

Repeated Characters

x? 0 or 1 occurrence of x

x* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's

abc All of abc respectively

to|be|great One of "to", "be" or "great"

#

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

##

Back referencing

#

e.g. swap first two words around on a line

red cat -> cat red

s/(\w+) (\w+)/$2 $1/;

#

##

2 On the Configuration pane, select Environment Settings.
3

To the right of Command/script to apply to preprocessed files, click .
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply

to preprocessed files field.

For more information, see “-post-preprocessing-command”.

Language Extensions

The software allows a verification to accept a subset of common C language constructs
and extended keywords, as defined by the C99 standard or supported by many compilers.

 Perl Regular Expressions

6-21

By default, the following constructs are accepted:

• Designated initializers (labeling initialized elements)
• Compound literals (structs or arrays as values)
• Boolean type (_Bool)
• Statement expressions (statements and declarations inside expressions)
• typeof constructs
• Case ranges
• Empty structures
• Cast to union
• Local labels (__label__)
• Hexadecimal floating-point constants
• Extended keywords, operators, and identifiers (_Pragma, __func__, __const__,

__asm__)

The software ignores the following extended keywords:

• near

• far

• restrict

• _attribute_(X)

• rom

Verify Keil or IAR Dialects

Typical embedded control applications frequently read and write port data, set timer
registers and read input captures. To deal with this without using assembly language,
some microprocessor compilers have specified special data types like sfrand sbit.
Typical declarations are:

sfr A0 = 0x80;

sfr A1 = 0x81;

sfr ADCUP = 0xDE;

sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The definition of sfr in these header files customizes the compiler to the
target processor.

6 Emulating Your Runtime Environment

6-22

When accessing a register or a port, using sfr data is then simple, but is not part of
standard ANSI C:

int status,P0;

void main (void) {

 ADCUP = 0x08; /* Write data to register */

 A1 = 0xFF; /* Write data to Port */

 status = P0; /* Read data from Port */

 EI = 1; /* Set a bit (enable all interrupts) */

}

You can verify this type of code using the Dialect (-dialect) option . This option allows
the software to support the Keil or IAR C language extensions even if some structures,
keywords, and syntax are not ANSI standard. The following tables summarize what is
supported when verifying code that is associated with the Keil or IAR dialects.

The following table summarizes the supported Keil C language extensions:

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ bool type.

bit x = 0, y = 1,

 z = 2;

assert(x == 0);

assert(y == 1);

assert(z == 1);

assert(sizeof(bit)

 == sizeof(int));

pointers to bits and
arrays of bits are not
allowed

Type sfr • The -sfr-types option
defines unsigned
types name and size
in bits.

• The behavior of a
variable follows
a variable of type
integral.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect keil

sfr and sbit types
are only allowed
in declarations of
external global
variables.

 Perl Regular Expressions

6-23

Type/Language Description Example Restrictions

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

-sfr-types sfr=8, \

 sfr16=16

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also be
declared as extern bit
in an another file.

sfr x = 0xF0;

sbit x1 = x ^ 1; // 1st bit of x

sbit x2 = 0xF0 ^ 2; // 2nd bit of x

sbit x3 = 0xF3; // 3rd bit of x

sbit y0 = t[3] ^ 1;

/* file1.c */

sbit x = P0 ^ 1;

/* file2.c */

extern bit x;

x = 1; // set the 1st bit of P0 to 1

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0

int x @ 0xFE ;

static const

int y @ 0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
<name>" or "task entry
point detected : <name>"

void foo1 (void)

interrupt XX = YY

using 99 {…}

void foo2 (void) _

task_ 99 _priority_

2 {…}

Entry points and
interrupts are not
taken into account as
-entry-points.

Keywords
removed during
preprocessing

The software removes
certain Keil keywords
during preprocessing.

alien, bdata, far, idata,
ebdata, huge, sdata

6 Emulating Your Runtime Environment

6-24

Type/Language Description Example Restrictions

If you use any of
these keywords as a
variable name, you see
a compilation error. To
avoid the compilation
error, do one of the
following:

• In the user
interface, enter
__PST_KEIL_NO_KEYWORDS__

for Preprocessor
definitions.

• On the command-
line, use the flag -D
__PST_KEIL_NO_KEYWORDS__.

The following table summarize the IAR dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ bool type.

• If initialized with
values 0 or 1, a
variable of type bit is
a simple variable (like
a c++ bool).

• A variable of type
bit is a register bit

union {

 int v;

 struct {

 int z;

 } y;

} s;

void f(void) {

 bit y1 = s.y.z . 2;

 bit x4 = x.4;

 bit x5 = 0xF0 . 5;

 y1 = 1;

 // 2nd bit of s.y.z

 // is set to 1

};

pointers to bits and
arrays of bits are not
allowed

 Perl Regular Expressions

6-25

Type/Language Description Example Restrictions

variable (mapped with
a bit or a sfr type)

Type sfr • The -sfr-types option
defines unsigned
types name and size.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables, cells
of integer array, and
struct/union integral
fields.

int x[3], y;

x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;

int xx @ 0xFE ;

static const int y \

 @0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

• A warning is
displayed in the log
file when an interrupt
function has been
found: "interrupt
handler detected :
funcname"

interrupt [1] \

 using [99] void \

 foo1(void) { ... };

monitor [3] void \

 foo2(void) { ... };

Entry points and
interrupts are not
taken into account as
-entry-points.

6 Emulating Your Runtime Environment

6-26

Type/Language Description Example Restrictions

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

Keywords
removed during
preprocessing

The software removes
certain IAR keywords
during preprocessing.

If you use any of
these keywords as a
variable name, you see
a compilation error. To
avoid the compilation
error, do one of the
following:

• In the user
interface, enter
__PST_IAR_NO_KEYWORDS__

for Preprocessor
definitions.

• On the command-
line, use the flag -D
__PST_IAR_NO_KEYWORDS__.

saddr, reentrant,

reentrant_idata,

non_banked, plm,

bdata, idata, pdata,

code, data, xdata,

xhuge, interrupt,

__interrupt and

__intrinsic

Unnamed struct/
union

• Fields of unions/
structs with no tag
and no name can
be accessed without
naming their parent
struct.

• On a conflict
between a field of an
anonymous struct
with other identifiers:

union { int x; };

union { int y; struct { int

z; }; } @ 0xF0;

 Perl Regular Expressions

6-27

Type/Language Description Example Restrictions

• with a variable
name, field name
is hidden

• with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

• with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“ is
displayed in the log
file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;

no_init union

{ int y; } @ 0xFE;

#pragma no_init has
no effect

The option -sfr-types defines the size of a sfr type for the Keil or IAR dialect.

The syntax for an sfr element in the list is type-name=typesize.

For example:

-sfr-types sfr=8,sfr16=16

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of 16-bits. A value
type-name must be given only once. 8, 16 and 32 are the only supported values for type-
size.

6 Emulating Your Runtime Environment

6-28

Note: As soon as an sfr type is used in the code, you must specify its name and size,
even if it is the keyword sfr.

Note: Many IAR and Keil compilers currently exist that are associated to specific targets.
It is difficult to maintain a complete list of those supported.

Gather Compilation Options Efficiently

The code is often tuned for the target (see “Verify Keil or IAR Dialects” on page 6-21).
Instead of applying minor changes to the code, create a single polyspace.h file that
contains all target specific functions and options. The -include option can then be used
to force the inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing the
expected definition or prototype within such a header file will yield several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• The position of the error will be identified more precisely.
• There will be no need to modify original source files.

Indirect benefits:

• The file is automatically included as the very first file in the original .c files.
• The file can contain much more powerful macro definitions than simple -D options.
• The file is reusable for other projects developed under the same environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly

// included by the cross compiler

#include <stdlib.h>

#include "another_file.h"

 Perl Regular Expressions

6-29

// Generic definitions, reusable from one project to another

#define far

#define at(x)

// A prototype may be positioned here to aid in the solution of

// a link phase conflict between

// declaration and definition. This will allow detection of the

// same error at compilation time instead of at link time.

// Leads to:

// - earlier detection

// - precise localisation of conflict at compilation time

void f(int);

// The same also applies to variables.

extern int x;

// Standard library stubs can be avoided,

// and OS standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the

 //automatic stubbing of std functions

#define __polyspace_no_sscanf

#define __polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);

void fgetc(void);

6 Emulating Your Runtime Environment

6-30

Supported C++ 2011 Standards

Standard Description Supported

C++2011-
N2118 Rvalue references Yes
C++2011-
N2439 Rvalue references for *this Yes
C++2011-
N1610 Initialization of class objects by rvalues Yes
C++2011-
N2756 Non-static data member initializers Yes
C++2011-
N2242 Variadic templates Yes
C++2011-
N2555 Extending variadic template template parameters Yes
C++2011-
N2672 Initializer lists Yes
C++2011-
N1720 Static assertions Yes
C++2011-
N1984 auto-typed variables Yes
C++2011-
N1737 Multi-declarator auto Yes
C++2011-
N2546 Removal of auto as a storage-class specifier Yes
C++2011-
N2541 New function declarator syntax Yes
C++2011-
N2927 New wording for C++0x lambdas Yes
C++2011-
N2343 Declared type of an expression Yes
C++2011-
N3276 decltype and call expressions Yes

 Supported C++ 2011 Standards

6-31

Standard Description Supported

C++2011-
N1757 Right angle brackets Yes
C++2011-
DR226 Default template arguments for function templates Yes
C++2011-
DR339 Solving the SFINAE problem for expressions Yes
C++2011-
N2258 Template aliases Yes
C++2011-
N1987 Extern templates Yes
C++2011-
N2431 Null pointer constant Yes
C++2011-
N2347 Strongly-typed enums Yes
C++2011-
N2764 Forward declarations for enums Yes
C++2011-
N2761 Generalized attributes Yes
C++2011-
N2235 Generalized constant expressions Yes
C++2011-
N2341 Alignment support Yes
C++2011-
N1986 Delegating constructors Yes
C++2011-
N2540 Inheriting constructors Yes
C++2011-
N2437 Explicit conversion operators Yes
C++2011-
N2249 New character types Yes
C++2011-
N2442 Unicode string literals Yes

6 Emulating Your Runtime Environment

6-32

Standard Description Supported

C++2011-
N2442 Raw string literals Yes
C++2011-
N2170 Universal character name literals No
C++2011-
N2765 User-defined literals Yes
C++2011-
N2342 Standard Layout Types Not applicable1

C++2011-
N2346 Defaulted and deleted functions Yes
C++2011-
N1791 Extended friend declarations No
C++2011-
N2253 Extending sizeof Yes
C++2011-
N2535 Inline namespaces Yes
C++2011-
N2544 Unrestricted unions Yes
C++2011-
N2657 Local and unnamed types as template arguments Yes
C++2011-
N2930 Range-based for Yes
C++2011-
N2928 Explicit virtual overrides Yes
C++2011-
N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-
N3053 Defining move special member functions Yes
C++2011-
N2239 Concurrency - Sequence points Not applicable1

C++2011-
N2427 Concurrency - Atomic operations No

 Supported C++ 2011 Standards

6-33

Standard Description Supported

C++2011-
N2748 Concurrency - Strong Compare and Exchange No
C++2011-
N2752 Concurrency - Bidirectional Fences No
C++2011-
N2429 Concurrency - Memory model Not applicable1

C++2011-
N2664

Concurrency - Data-dependency ordering: atomics and
memory model No

C++2011-
N2179 Concurrency - Propagating exceptions No
C++2011-
N2440 Concurrency - Abandoning a process and at_quick_exit Yes
C++2011-
N2547 Concurrency - Allow atomics use in signal handlers No
C++2011-
N2659 Concurrency - Thread-local storage No
C++2011-
N2660

Concurrency - Dynamic initialization and destruction
with concurrency No

C++2011-
N2340 __func__ predefined identifier Yes
C++2011-
N1653 C99 preprocessor Yes
C++2011-
N1811 long long Yes
C++2011-
N1988 Extended integral types Not applicable1

1 This C++11 requirement is not a factor in a Polyspace verification.

See Also
“C++11 Extensions (C++)”

6 Emulating Your Runtime Environment

6-34

Verify C Application Without a “Main”

In this section...

“Main Generator Overview” on page 6-34
“Automatically Generate a Main” on page 6-34
“Manually Generate a Main” on page 6-36
“Specify Call Sequence” on page 6-36
“Main Generator Assumptions” on page 6-37

Main Generator Overview

Polyspace verification requires that your code must have a main function. You can do one
of the following:

• Provide a main function in your code.
• Specify that Polyspace must generate a main.

Before verification, you can specify one of the following options:

Option Description

Verify whole application The verification stops if the software does
not detect a main.

Verify module (default) Before verification, Polyspace checks your
code for a main.

• If your source files contain a main
function, the verification uses that
main.

• If your source files do not contain
a main function, the verification
generates a main using the options that
you specify.

Automatically Generate a Main

To automatically generate a main, on the Configuration > Code Prover Verification
pane, click Verify module.

 Verify C Application Without a “Main”

6-35

Note: If a main exists in your code, then the verification uses this main and disregards
the Verify module options.

For cyclic program code generated from a Simulink model, the generated main:

1 Initializes calibration variables identified by the -variables-written-before-
loop option.

2 Calls initialization functions specified by the -functions-called-before-loop
option.

3 Initializes input variables identified by the -variables-written-in-loop option.
This initialization of variables is performed for each cycle.

4 Calls cyclic functions specified by the -functions-called-in-loop option.
5 Calls termination functions specified by the option -functions-called-after-

loop.

For other code, the generated main:

1 Initializes variables identified by the -main-generator-writes-variables
option.

2 Calls initialization functions specified by the -functions-called-before-main
option.

3 Calls functions specified by the -main-generator-calls option. The order and the
number of times that the functions are called is not specified.

Main for Generated Code

The following example shows how to use the main generator options to generate a main
for a cyclic program, such as code generated from a Simulink model.

init parameters // -variables-written-before-loop

init_fct() // -functions-called-before-loop

volatile int random = 0;

while(random){ // Start main loop

 init inputs // -variables-written-in-loop

 step_fct() // -functions-called-in-loop

}

terminate_fct() // -functions-called-after-loop

6 Emulating Your Runtime Environment

6-36

Manually Generate a Main

Manually generating a main is often preferable to an automatically generated main,
because it allows you to provide a more accurate model of the calling sequence to be
generated.

To manually define the main:

1 Identify the API functions and extract their declarations.
2 Create a main containing declarations of a volatile variable for each type that is

mentioned in the function prototypes.
3 Create a loop with a volatile end condition.
4 Inside this loop, create a switch block with a volatile condition.
5 For each API function, create a case branch that calls the function using the volatile

variable parameters you created.

Consider the following example. Suppose that the API functions are:

int func1(void *ptr, int x);

void func2(int x, int y);

You should create the following main:
void main()

{

volatile int random; /* We need an integer variable as a function

parameter */

volatile void * volatile ptr; /* We need a void pointer as a function

parameter */

while (random) {

 switch (random) {

 case 1:

 random = func1(ptr, random); break; /* One API function call */

 default:

 func2(random, random); /* Another API function call */

 }

}

Specify Call Sequence

Polyspace software verifies functions on the basis that the functions can be called in any
order. Consider a scenario where a function f is listed before a function g. If actions in
f must be executed before g is called, writing a main which calls f and g in the required
order will produce a higher selectivity.

 Verify C Application Without a “Main”

6-37

Colored Source Code Example

With default settings, a Polyspace verification will not identify defects in the following
example.

static char x;

static int y;

void f(void)

{

y = 300;

}

void g(void)

{

x = y; // red or green OVFL?

}

However, if you know the call sequence, you can create a main that calls the functions in
the desired order:

void main(void)

{

f()

g()

}

If f is called first, the assignment x = y; generates a red check as assigning 300 to a
char is incorrect. The assignment statement would be green if g were called before f.

Main Generator Assumptions

When using the automatic main generator to verify a specific function, the objective is
to find problems with the function. To do this, the generated main makes assumptions
about parameters so that you can focus on run-time errors (red, gray and orange) that
are related to the function.

The main generator makes assumptions about the arguments of called functions to
reduce the number of orange checks in the results. Therefore, when you see an orange
check in your results, it is likely to be due to the function, not the main.

However, green checks are computed with the same assumptions. Therefore, you should
be cautious of green checks involving the main, especially when conducting unit-by-unit
verification.

6 Emulating Your Runtime Environment

6-38

Polyspace C++ Class Analyzer

In this section...

“Why Provide a Class Analyzer” on page 6-38
“How the Class Analyzer Works” on page 6-39
“Sources Verified” on page 6-39
“Architecture of Generated Main” on page 6-39
“Class Verification Log File” on page 6-40
“Characteristics of Class and Log File Messages” on page 6-40
“Behavior of Global Variables and Members” on page 6-41
“Methods and Class Specifics” on page 6-43
“Simple Class” on page 6-45
“Simple Inheritance” on page 6-47
“Multiple Inheritance” on page 6-48
“Abstract Classes” on page 6-49
“Virtual Inheritance” on page 6-49
“Other Types of Classes” on page 6-50

Why Provide a Class Analyzer

One aim of object-oriented languages such as C++ is reusability. A class or a class
family is reusable if it is free of defects for all possible uses of the class. The class can
be considered free of defects if run-time errors have been removed and the class passes
functional tests. The foremost objective when developing code in such a language is to
identify and remove as many run-time errors as possible.

Polyspace class analyzer is a tool for removing run-time errors at compilation time. The
software will simulate alluses of a class by:

1 Creating objects using all constructors (default if none exist).
2 Calling all methods (public, static, and protected) of previous objects in every order.
3 Calling all methods of the class between time zero and infinity.
4 Calling every destructor of previous objects (if they exist).

 Polyspace C++ Class Analyzer

6-39

How the Class Analyzer Works

Polyspace Class Analyzer verifies applications class by class, even if these classes are
only partially developed.

The benefits of this process include error detection at a very early stage, even if the class
is not fully developed, without test cases to write. The process is very simple: provide the
class name and the software will verify its robustness.

• Polyspace software generates a “pseudo” main.
• It calls each constructor of the class.
• It then calls each public function from the constructors.
• Each parameter is initialized with full range (i.e., with a random value).
• External variables are assigned random values.

Note: Only prototypes of objects (classes, methods, variables, etc.) are required to verify a
given class. Missing code is automatically stubbed.

Sources Verified

The sources associated with the verification normally concern public and protected
methods of the class. However, sources can also come from inherited classes (fathers) or
be the sources of other classes that are used by the class under investigation (friend, etc.).

Architecture of Generated Main

Polyspace software generates the call to each constructor and method of the class. Each
method will be analyzed with all constructors. Each parameter is initialized to random.
Note that even if you can get an idea of the architecture of the generated main in the
Results Manager perspective, the main is not real. You cannot reuse or compile it.

Consider an example class MathUtils. This class contains one constructor, one
destructor and seven public methods. The architecture of the generated main is as
follows:
Generating call to constructor: MathUtils:: MathUtils ()

While (random) {

 If (random) Generating call to function: MathUtils::Pointer_Arithmetic()

 If (random) Generating call to function: MathUtils::Close_To_Zero()

6 Emulating Your Runtime Environment

6-40

 If (random) Generating call to function: MathUtils::MathUtils()

 If (random) Generating call to function: MathUtils::Recursion_2(int *)

 If (random) Generating call to function: MathUtils::Recursion(int *)

 If (random) Generating call to function: MathUtils::Non_Infinite_Loop()

 If (random) Generating call to function: MathUtils::Recursion_caller()

}

Generating call to destructor: MathUtils::~MathUtils()

Note: If a class contains more than one constructor, they are called before the “while”
statement in an “if then else” statement. This architecture ensures that the verification
will evaluate each function method with every constructor.

Class Verification Log File

During a class verification, the list of methods used for the main appears in the log file
during the normalization phase of the C++ verification.

You can view the details of what is analyzed in the log file. Consider an example class
MathUtils with an associated log file:

...

* Generating the Main ...

Generating call to function: MathUtils::Pointer_Arithmetic()

Generating call to function: MathUtils::Close_To_Zero()

Generating call to function: MathUtils::MathUtils()

Generating call to function: MathUtils::Recursion_2(int *)

Generating call to function: MathUtils::Recursion(int *)

Generating call to function: MathUtils::Non_Infinite_Loop()

Generating call to function: MathUtils::~MathUtils()

Generating call to function: MathUtils::Recursion_caller()

If a main is defined in the files being analyzed, you receive a warning:

…

* Warning: a main procedure already exists but will be ignored.

Characteristics of Class and Log File Messages

The log file may contain some error messages concerning the class to be analyzed. These
messages appear when characteristics of a class are not respected.

• It is not possible to analyze a class that does not exist in the given sources. The
verification will halt with the following message:

 Polyspace C++ Class Analyzer

6-41

@User Program Error: Argument of option -class-analyzer

must be defined : <name>.

Please correct the program and restart the verifier.

• It is not possible to analyze a class that only contains declarations without code. The
verification will halt with the following message:

@User Program Error: Argument of option -class-analyzer

must contain at least one function : <name>.

Please correct the program and restart the verifier.

Behavior of Global Variables and Members

Global Variables

During a class verification, global variables are not considered to be following ANSI
Standard anymore if they are defined but not initialized. Remember that ANSI Standard
considers, by default, that global variables are initialized to zero.

In a class verification, global variables do not follow standard behaviors:

• Defined variables are initialized to random and then follow the data flow of the code
to be analyzed.

• Initialized variables are used with the specified initialized values and then follow the
data flow of the code to be analyzed.

• External variables are assigned definitions and initialized to random values.

An example below demonstrates the behaviors of two global variables:

1

2 extern int fround(float fx);

3

4 // global variables

5 int globvar1;

6 int globvar2 = 100;

7

8 class Location

9 {

10 private:

6 Emulating Your Runtime Environment

6-42

11 void calculate_new(void);

12 int x;

13

14 public:

15 // constructor 1

16 Location(int intx = 0) { x = intx; };

17 // constructor 2

18 Location(float fx) { x = fround(fx); };

19

20 void setx(int intx) { x = intx; calculate_new(); };

21 void fsetx(float fx) {

22 int tx = fround(fx);

23 if (tx / globvar1 != 0) // ZDV check is orange

24 {

25 tx = tx / globvar2; // ZDV check is green

26 setx(tx);

27 }

28 };

29 };

In the above example, globvar1 is defined but not initialized (see line 5), so the check
ZDV is orange at line 23. In the same example, globvar2 is initialized to 100 (see line
6), so the ZDV check is green at line 25.

Data Members of Other Classes

During the verification of a specific class, variable members of other classes, even
members of parent classes, are considered to be initialized. They exhibit the following
behaviors:

1 They may not be considered to be initialized if the constructor of the class is not
defined. They are assigned to full range, and then they follow the data flow of the
code to be analyzed.

2 They are considered to be initialized to the value defined in the constructor if the
constructor of the class is defined in the class and is provided for the verification. If
the -class-only option is applied, the software behaves as though the definition of
the constructor is missing (see item 1 above).

3 They may be checked as run-time errors if and only if the constructor is defined but
does not initialize the member under consideration.

The example below displays the results of a verification of the class MyClass. It
demonstrates the behavior of a variable member of the class OtherClass that was

 Polyspace C++ Class Analyzer

6-43

provided without the definition of its constructor. The variable member of OtherClass
is initialized to random; the check is orange at line 7 and there are possible overflows at
line 17 because the range of the return value wx is “full range” in the type definition.

class OtherClass

{

protected:

 int x;

public:

 OtherClass (int intx); // code is missing

 int getMember(void) {return x;}; // NIV is warning

};

class MyClass

{

 OtherClass m_loc;

public:

 MyClass(int intx) : m_loc(0) {};

 void show(void) {

 int wx, wl;

 wx = m_loc.getMember();

 wl = wx*wx + 2; // Possible overflows because OtherClass

 // member is assigned to full range

 };

};

Methods and Class Specifics

Template

A template class cannot be verified on its own. Polyspace software will only consider a
specific instance of a template to be a class that can be analyzed.

Consider template<class T, class Z> class A { }.

If we want to analyze template class A with two class parameters T and Z, we have to
define a typedef to create an instance of the template with specified specializations for T
and Z. In the example below, T represents an int and Z a double:

template class A<int, double>; // Explicit specialisation

typedef class A<int, double> my_template;

my_template is used as a parameter of the -class-analyzer option in order to
analyze this instance of template A.

6 Emulating Your Runtime Environment

6-44

Abstract Classes

In the real world, an instance of an abstract class cannot be created, so it cannot
be analyzed. However, it is easy to establish a verification by removing the pure
declarations. For example, this can be accomplished via an abstract class definition
change:

void abstract_func () = 0; by void abstract_func ();

If an abstract class is provided for verification, the software will make the change
automatically and the virtual pure function (abstract_func in the example above) will
then be ignored during the verification of the abstract class.

This means that no call will be made from the generated main, so the function is
completely ignored. Moreover, if the function is called by another one, the pure virtual
function will be stubbed and an orange check will be placed on the call with the message
“call of virtual function [f] may be pure.”

Static Classes

If a class defines a static methods, it is called in the generated main as a classical one.

Inherited Classes

When a function is not defined in a derived class, even if it is visible because it is
inherited from a father's class, it is not called in the generated main. In the example
below, the class Point is derived from the class Location:

class Location

{

protected:

 int x;

 int y;

 Location (int intx, int inty);

public:

 int getx(void) {return x;};

 int gety(void) {return y;};

};

class Point : public Location

{

protected:

 bool visible;

public :

 Point(int intx, int inty) : Location (intx, inty)

 Polyspace C++ Class Analyzer

6-45

 {

 visible = false;

 };

 void show(void) { visible = true;};

 void hide(void) { visible = false;};

 bool isvisible(void) {return visible;};

};

Although the two methods Location::getx and Location::gety are visible for
derived classes, the generated main does not include these methods when analyzing the
class Point.

Inherited members are considered to be volatile if they are not explicitly initialized in
the father's constructors. In the example above, the two members Location::x and
Location::y will be considered volatile. If we analyze the above example in its current
state, the method Location:: Location(constructor) will be stubbed.

Simple Class

Consider the following class:

Stack.h

#define MAXARRAY 100

class stack

{

 int array[MAXARRAY];

 long toparray;

public:

 int top (void);

 bool isempty (void);

 bool push (int newval);

 void pop (void);

 stack ();

};

stack.cpp

1 #include "stack.h"

2

3 stack::stack ()

4 {

6 Emulating Your Runtime Environment

6-46

5 toparray = -1;

6 for (int i = 0 ; i < MAXARRAY; i++)

7 array[i] = 0;

8 }

9

10 int stack::top (void)

11 {

12 int i = toparray;

13 return (array[i]);

14 }

15

16 bool stack::isempty (void)

17 {

18 if (toparray >= 0)

19 return false;

20 else

21 return true;

22 }

23

24 bool stack::push (int newvalue)

25 {

26 if (toparray < MAXARRAY)

27 {

28 array[++toparray] = newvalue;

29 return true;

30 }

31

32 return false;

33 }

34

35 void stack::pop (void)

36 {

37 if (toparray >= 0)

38 toparray--;

39 }

The class analyzer calls the constructor and then all methods in any order many times.

The verification of this class highlights two problems:

• The stack::push method may write after the last element of the array, resulting in
the OBAI orange check at line 28.

• If called before push, the stack::top method will access element -1, resulting in the
OBAI and NIV checks at line 13.

 Polyspace C++ Class Analyzer

6-47

Fixing these problems will eliminate run-time errors in this class.

Simple Inheritance

Consider the following classes:

A is the base class of B and D.

B is the base class of C.

In a case such a this, Polyspace software allows you to run the following verifications:

1 You can analyze class A just by providing its code to the software. This corresponds
to the previous “Simple Class” section in this chapter.

2 You can analyze class B class by providing its code and the class A declaration. In
this case, A code will be stubbed automatically by the software.

6 Emulating Your Runtime Environment

6-48

3 You can analyze class B class by providing B and A codes (declaration and definition).
This is a “first level of integration” verification. The class analyzer will not call A
methods. In this case, the objective is to find bugs only in the class B code.

4 You can analyze class C by providing the C code, the B class declaration and the A
class declaration. In this case, A and B codes will be stubbed automatically.

5 You can analyze class C by providing the A, B and C code for an integration
verification. The class analyzer will call all the C methods but not inherited methods
from B and A. The objective is to find only defects in class C.

In these cases, there is no need to provide D class code for analyzing A, B and C classes as
long as they do not use the class (e.g., member type) or need it (e.g., inherit).

Multiple Inheritance

Consider the following classes:

A and B are base classes of C.

In this case, Polyspace software allows you to run the following verifications:

1 You can analyze classes A and B separately just by providing their codes to the
software. This corresponds to the previous “Simple Class” section in this chapter.

2 You can analyze class C by providing its code with A and B declarations. A and B
methods will be stubbed automatically.

 Polyspace C++ Class Analyzer

6-49

3 You can analyze class C by providing A, B and C codes for an integration verification.
The class analyzer will call all the C methods but not inherited methods from A and
B. The objective is to find bugs only in class C.

Abstract Classes

Consider the following classes:

A is an abstract class

B is a simple class.

A and B are base classes of C.

C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed separately
from other classes. Therefore, you are not allowed to specify class A to the Polyspace class
analyzer. Of course, class C can be analyzed in the same way as in the previous section
“Multiple Inheritance.”

Virtual Inheritance

Consider the following classes:

6 Emulating Your Runtime Environment

6-50

B and C classes virtually inherit the A class

B and C are base classes of D.

A, B, C and D can be analyzed in the same way as described in the previous section
“Abstract Classes.”

Virtual inheritance has no impact on the way of using the class analyzer.

Other Types of Classes

Template Class

A template class can not be analyzed directly. But a class instantiating a template can be
analyzed by Polyspace software.

Note: If only the template declaration is provided, missing functions' definitions will
automatically be stubbed.

 Polyspace C++ Class Analyzer

6-51

Example

template<class T > class A {

public:

 T i;

 T geti() {return i;}

 A() : i(1) {}

};

You have to define a typedef to create a specialization of the template:

template class A<int>; // Explicit specialization

typedef class A<int> my_template; // complete instance of the template

and use option -class-analyzer my_template.

The software will analyze a single instance of the template.

Class Integration

Consider a C class that inherits from A and B classes and has object members of AA and
BB classes.

A class integration verification consists of verifying class C and providing the codes for A,
B, AA and BB. If some definitions are missing, the software will automatically stub them.

6 Emulating Your Runtime Environment

6-52

Data Range Specifications

Polyspace proves that your code does not contain certain run-time errors for all
verification conditions. For example, if you do not have a main and a function is not
called anywhere in the code, the verification considers that the function inputs are set to
full range. Therefore, most operations on these inputs produce an overflow.

However, you can provide more context to your verification. Using Data Range
Specifications, you can constrain variable ranges and verify your code for these ranges.
This can substantially reduce the number of unproven results.

You can constrain the following kinds of variables:

• Global variables.
• Inputs for functions called by the generated main.
• Return values for stubbed functions.

Related Examples
• “Create Data Range Specification Template”
• “Specify Data Ranges Using Existing Template”
• “Specify Data Ranges Using Text Files”
• “Perform Efficient Module Testing with DRS”
• “Reduce Oranges with DRS”

 Create Data Range Specification Template

6-53

Create Data Range Specification Template

Polyspace can analyze the files in your project and generate a template listing global
variables, user-defined functions, and stubbed functions. You can modify this template to
constrain variable ranges. For more information, see “Data Range Specifications”.

To constrain variable ranges using this template:

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

3 Click Generate. The software compiles the project and generates a DRS template.

Note: If the option -unit-by-unit is enabled:

6 Emulating Your Runtime Environment

6-54

• The generated file represents the union of DRS values generated for each
unit.

• The DRS file generation functionality is not supported for C++.
4 Specify ranges for global variables, user-defined function inputs, and return values of

stubbed functions. For more information, see “DRS Configuration Settings” on page
6-66.

5
To save your DRS template, click (Save DRS).

To save your DRS template to a location that you specify, click (Save DRS as).
6

If you change your source code, click to generate an updated DRS
template. As a result of the source code changes, the updated template might contain
entries that no longer apply to your code. You can remove these entries from the file.
See “Remove Non Applicable Entries from DRS Template” on page 6-57.

7 Click OK to close the Polyspace DRS Configuration dialog box. The Variable/
function range setup field now contains the name of the DRS template. The
software uses this DRS template the next time you start a verification.

8 Select File > Save to save your project settings.

Related Examples
• “Specify Data Ranges Using Existing Template”
• “Edit Existing DRS Template”

 Specify Data Ranges Using Existing Template

6-55

Specify Data Ranges Using Existing Template

Once you have created a DRS template for a project, you can reuse the ranges for
subsequent verifications. For more information, see “Data Range Specifications”.

To specify an existing DRS template for your project:

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

3
Click .

4 In the Load a DRS file window, navigate to the folder that contains the required DRS
template, and select the file. Then click Open. The Load a DRS file dialog box closes.

5 In the Polyspace DRS Configuration dialog box, click OK.
6 Select File > Save to save your project settings, including the DRS template

location.

The software uses the specified DRS template the next time you start a verification.

Related Examples
• “Create Data Range Specification Template”
• “Edit Existing DRS Template”

6 Emulating Your Runtime Environment

6-56

Edit Existing DRS Template

Once you have created a DRS template for your project, you can edit the template using
the Polyspace DRS Configuration dialog box. For more information, see “Data Range
Specifications”.

To edit an existing DRS template:

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

3 Specify ranges for global variables, user-defined function inputs, and return values of
stubbed functions.

4
To save your DRS template, click .

5 Click OK, which closes the Polyspace DRS Configuration dialog box.

Related Examples
• “Create Data Range Specification Template”
• “Remove Non Applicable Entries from DRS Template”

 Remove Non Applicable Entries from DRS Template

6-57

Remove Non Applicable Entries from DRS Template

If you change your source code, you must update your DRS template.

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

3
Click .

The software updates the template, placing DRS entries that no longer apply to your
code under the Non Applicable node.

4 Remove entries that do not apply.

a Right-click Non Applicable.
b From the context menu, select Remove This Node.

5 Remove entries corresponding to a subnode.

• Right-click the subnode, for example, Non_Infinite_loop().
• From the context menu, select Remove This Node.

Related Examples
• “Create Data Range Specification Template”
• “Edit Existing DRS Template”

6 Emulating Your Runtime Environment

6-58

Specify Data Ranges Using Text Files

For precise verification, you must provide a list of global variables, function inputs and
return values of stubbed functions along with their ranges.

You can specify these ranges using:

• The Polyspace DRS Configuration dialog box. For more information, see “Create Data
Range Specification Template” on page 6-53.

• A text file that contains a list of variables and their ranges.

To specify data ranges using a text file:

1 Create a text file containing the list of global variables (or functions) and their
associated data ranges, as described in “DRS Text File Format” on page 6-59.

2 Open your project in the Project Browser.
3 On the Configuration pane, select Inputs & Stubbing.
4 To the right of Variable/function range setup, click the Edit button.

The Polyspace DRS Configuration dialog box opens.

5
Click .

6 Navigate to the folder that contains the text file, and select the file. Then click
Open.

7 In the Polyspace DRS Configuration dialog box, click OK.

 Specify Data Ranges Using Text Files

6-59

8 Select File > Save to save your project settings, including the DRS file location.

When you run a verification, the software automatically merges the data ranges in the
text file with a DRS template for the project and saves the information in the file drs-
template.xml, located in your results folder.

DRS Text File Format

The DRS file contains a list of global variables and associated data ranges. The point
during verification at which the range is applied to a variable is controlled by the mode
keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable_name min_value max_value <init|permanent|globalassert>

function_name.return min_value max_value permanent

• variable_name — The name of the global variable.
• min_value — The minimum value for the variable.
• max_value — The maximum value for the variable.
• init — The variable is assigned to the specified range only at initialization, and

keeps it until first write.
• permanent — The variable is permanently assigned to the specified range. If the

variable is assigned outside this range during the program, no warning is provided.
Use the globalassert mode if you need a warning.

• globalassert — After each assignment, an assert check is performed, controlling
the specified range. The assert check is also performed at global initialization.

• function_name — The name of the stub function.

Tips for Creating DRS Text Files

• You can use the keywords "min" and "max" to denote the minimum and maximum
values of the variable type. For example, for the type long, min and max correspond to
-2^31 and 2^31-1 respectively.

• You can use hexadecimal values. For example, x 0x12 0x100 init.
• Supported column separators are tab, comma, space, or semicolon.

6 Emulating Your Runtime Environment

6-60

• To insert comments, use shell style “#”.
• init is the only mode supported for user-defined function arguments.
• permanent is the only mode supported for stub function output.
• Function names may be C or C++ functions with blanks or commas. For example,

f(int, int).
• Function names can be specified in the short form (“f") as long as no ambiguity exists.
• The function returns either an integral (including enum and bool) or floating point

type. If the function returns an integral type and you specify the range as a floating
point [v0.x, v1.y], the software applies the integral interval [(int)v0-1,
(int)v1+1].

Example DRS Text File

In the following example, the global variables are named x, y, z, w, and v.

x 12 100 init

y 0 10000 permanent

z 0 1 globalassert

w min max permanent

v 0 max globalassert

arrayOfInt -10 20 init

s1.id 0 max init

array.c2 min 1 init

car.speed 0 350 permanent

bar.return -100 100 permanent

x is defined between [12;100] at initialization

y is permanently defined between [0,10000] even any assignment

z is checked in the range [0;1] after each assignment

w is volatile and full range on its declaration type

v is positive and checked after each assignment.

All cells arrayOfInt are defined between [-10;20] at initialization

s1.id is defined between [0;2^31-1] at initialisation.

All cells array[i].c2 are defined between [-2^31;1] at initialization

Speed of Struct car is permanently defined between 0 and 350 Km/h

function bar returns -100..100

 Perform Efficient Module Testing with DRS

6-61

Perform Efficient Module Testing with DRS

DRS allows you to perform efficient static testing of modules. This is accomplished by
adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

• Input data are consumed
• Output data are produced
• Constant calibrations are used during black box execution influencing intermediate

results and output data.

Using the DRS feature, you can define:

• The nominal range for input data
• The expected range for output data
• The generic specified range for calibrations

These definitions then allow Polyspace software to perform a single static verification
that performs two simultaneous tasks:

• answering questions about robustness and reliability
• checking that the outputs are within the expected range, which is a result of applying

black-box tests to a module

In this context, you assign DRS keywords according to the type of data (inputs, outputs,
or calibrations).

Type of Data DRS Mode Effect on Results Why? Oranges Selectivity

Inputs
(entries)

permanent Reduces the number
of oranges, (compared
with a standard
Polyspace verification)

Input data that were
full range are set to
a smaller range.

↓ ↑

Outputs globalassert Increases the number
of oranges, (compared
with a standard
Polyspace verification)

More verification is
introduced into the
code, resulting in
both more orange
checks and more
green checks.

↑ →

6 Emulating Your Runtime Environment

6-62

Type of Data DRS Mode Effect on Results Why? Oranges Selectivity

Calibration init Increases the number
of oranges, (compared
with a standard
Polyspace verification)

Data that were
constant are set to a
wider range.

↑ ↓

 Reduce Oranges with DRS

6-63

Reduce Oranges with DRS

When performing robustness (worst case) verification, data inputs are set to their full
range. Therefore, every operation on these inputs, even a simple one_input + 10 can
produce an overflow, as the range of one_input varies between the minimum and the
maximum of the type.

If you use DRS to restrict the range of one_input to the real functional constraints
found in its specification, design document, or models, you can reduce the number of
orange checks reported for the variable. For example, if you specify that one_input can
vary between 0 and 10, Polyspace software knows that:

• one_input + 100 never overflows
• The results of this operation is always between 100 and 110

This not only eliminates the local overflow orange check, but also results in more
accuracy in the data. This accuracy is then propagated through the rest of the code.

Using DRS removes the oranges located in the red circle below.

6 Emulating Your Runtime Environment

6-64

Why Is DRS Most Effective on Module Testing?

Removing oranges caused by full-range (worst-case) data can drastically reduce the total
number of orange checks, especially when used on verifications of small files or modules.
However, the number of orange checks caused by code complexity is not effected by DRS.
For more information on oranges caused by code complexity, see “Subdivide Code”.

This section describes how DRS reduces oranges on files or modules only.

Example

The following example illustrates how DRS can reduce oranges. Suppose that in the real
world, the input “My_entry” can vary between 0 and 10.

Polyspace verification produces the following results: one with DRS and one without.

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

• With “My_entry“ being full range, the
addition “+” is orange,

• the result “x” is equal to all values between
[min+100 max]

• Due to previous computations, x+1 can here
overflow too, making the addition “+”orange.

• With “My_entry” being bounded to [0,10], the
addition “+” is green

• the result “x” is equal to [100,110]
• Due to previous computations, x+1 can NOT

overflow here, making the addition “+” green
again.

 Reduce Oranges with DRS

6-65

Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

6 Emulating Your Runtime Environment

6-66

DRS Configuration Settings

The Polyspace DRS Configuration dialog box allows you to specify data ranges for global
variables, user-defined functions, and stub functions in your project.

Column Settings

Name Displays the list of variables and functions in your Project for
which you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays a list of global variables in the Project.
• User defined functions – Displays a list of user-defined

functions in the Project. Expand a function name to see a list of
the input arguments for which you can specify a data range.

• Stubbed functions – Displays a list of stub functions in the
Project. Expand a function name to see a list of the return
values for which you can specify a data range.

File Displays the name of the source file containing the variable or
function.

Attributes Displays information about the variable or function.

For example, static variables display static.
Data Type Displays the variable type.
Main Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop
(C) or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.
• YES – Main generator will call this function.

Init Mode Specifies how the software assigns a range to the variable:

 DRS Configuration Settings

6-67

Column Settings

• MAIN GENERATOR – Variable range is assigned depending
on the settings of the main generator options -variables-
written-before-loop and -no-def-init-glob.
(For C++, the options are -main-generator-writes-
variables, and -no-def-init-glob.)

• IGNORE – Variable is not assigned to any range, even if a range
is specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode
if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed

object is allocated (Initialize Pointer and Init Allocated
options).

6 Emulating Your Runtime Environment

6-68

Column Settings

Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum
and maximum values of the variable type. For example, for
the type long, min and max correspond to -2^31 and 2^31-1
respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday, wednesday, thursday, friday, saturday};

Initialize Pointer Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL
pointer (or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note: Not applicable for C++ projects.

 DRS Configuration Settings

6-69

Column Settings

Init Allocated Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an

array. (This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

See Pointer Examples.

Note: Not applicable for C++ projects.
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the
pointed object is considered as an array).

Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized. See Pointer Examples.

Note: Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at

global initialization, and after each assignment.
Global Assert
Range

Specifies the minimum and maximum values for the range you
want to check.

Comment Remarks that you enter, for example, justification for your DRS
values.

Pointer Examples

For pointer p, # Allocated objects = 1, and Init Allocated = Single:

void f(int *p) {

6 Emulating Your Runtime Environment

6-70

 int x;

 x = p[0]; // green IDP, green NIV

 x = p[1]; // red IDP: out of bounds

}

Note: Pointer p may point to any element inside the array.

For pointer p (a pointer to int), # Allocated objects = 3, and Init Allocated = MULTI:

void f(int *p) {

 int x;

 x = p[0]; // green IDP, green NIV

 x = p[1]; // orange IDP, green NIV

 x = p[2]; // orange IDP, green NIV

 x = p[3]; // red IDP: out of bounds

}

 Variable Scope

6-71

Variable Scope

DRS supports variables with external linkages, const variables, extern variables, and
defined variables.

Note: If you set a data range on a const global variable that is used in another variable
declaration (for example as an array size) the variable using the global variable ranged,
is not ranged itself.

The following table summarizes possible uses:

 init permanent globalassert comments

Integer Ok Ok Ok char, short, int,
enum, long and
long long

If you define a
range in floating
point form,
rounding is
applied.

Real Ok Ok Ok float, double
and long double

If you define a
range in floating
point form,
rounding is
applied.

Volatile No effect Ok Full range Only for int and
real

Structure field Ok Ok Ok Only for int
and real fields,
including arrays
or structures of
int or real fields
(see below)

6 Emulating Your Runtime Environment

6-72

 init permanent globalassert comments

Structure field in
array

Ok No effect No effect Only when
leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for int
and real
fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer Ok (for C)

No effect for C++

No effect No effect For C, you can
specify how the
main generator
initializes the
pointed variable,
and how the
pointed object is
written.

Union field Ok No effect Ok See “DRS
Support for Union
Members” on page
6-73.

Complete
structure

No effect No effect No effect

Array cell No effect No effect No effect Example: array[0],
array[10] …

User-defined
function
arguments

Ok No effect No effect Main generator
calls the function
with arguments in
the specified range

 Variable Scope

6-73

 init permanent globalassert comments

Stubbed function
return

No effect Ok No effect Stubbed function
returning integer
or floating point

Every variable (or function) and associated data range will be written in the log file
during the compile phase of verification. If Polyspace software does not support the
variable, a warning message is displayed.

Note: If you use DRS to set a data range on a const global variable that is used in
another variable declaration (for example as an array size), the variable that uses the
global variable you ranged is not ranged itself.

DRS Support for Structures

DRS can initialize arrays of structures, structures of arrays, etc., as the long as the last
field is explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the fields. For
example, "s.x 20 40 init" is valid, but "s 20 40 init" is not (because Polyspace
software cannot determine what fields to initialize).

DRS Support for Union Members

In init mode, the software applies the last range in DRS to the union members at the
given offset.

In globalassert mode, the software checks every globalassert in DRS for a given offset
within the union at every assignment to the union variable at that offset.

For example:

union position {

 int sunroof;

 int window;

 int locks;

} positionData;

DRS:

6 Emulating Your Runtime Environment

6-74

positionData.sunroof 0 100 globalassert

positionData.window -100 0 globalassert

positionData.locks -1 1 globalassert

An assignment to positionData.locks (or other members) will perform assertion
checking on the ranges 0 to 100, -100 to 0, and -1 to 1.

 XML Format of DRS File

6-75

XML Format of DRS File

Syntax Description — XML Elements

The DRS file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element of the XML
file.

• <file> element — Declares a file scope. Must be enclosed in the <global> element.
May enclose any variable or function declaration. Static variables must be enclosed in
a file element to avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May be enclosed
in any recognized element, but cannot enclose any element. Sets init/permanent/
global asserts on variables.

• <pointer> element — Declares a pointer variable. May enclose any other variable
declarations (including itself), to define the pointed objects. Specifies what value
is written into pointer (NULL or not), how many objects are allocated and how the
pointed objects are initialized.

• <array> element — Declares an array variable. May enclose any other variable
definition (including itself), to define the members of the array.

• <struct> element — Declares a structure variable or object (instance of class).
May enclose any other variable definition (including itself), to define the fields of the
structure.

• <function> element — Declares a function or class method scope. May enclose any
variable definition, to define the arguments and the return value of the function.
Arguments should be named arg1, arg2, …argn and the return value should be
called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for verification
to accept the ranges. The field line contains the line number where the variable is
declared in the source code, complete_type contains a string with the complete
variable type, and base_type is used by the GUI to compute the min and max
values. The field comment is used to add information about any node.

• (**) — The field name is mandatory for scope elements <file> and <function>
(except for function pointers). For other elements, the name must be specified when
declaring a root symbol or a struct field.

6 Emulating Your Runtime Environment

6-76

• (***) — If more than one attribute applies to the variable, the attributes must
be separated by a space. Only the static attribute is mandatory, to avoid conflicts
between static variables having the same name. An attribute can be defined multiple
times without impact.

• (****) — This element is used only by the GUI, to determine which init modes are
allowed for the current element (according to its type). The value works as a mask,
where the following values are added to specify which modes are allowed:

• 1: The mode “NO” is allowed.
• 2 : The mode “INIT” is allowed.
• 4: The mode “PERMANENT” is allowed.
• 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and “MAIN_GENERATOR” are
allowed. To see how this value is computed, refer to “Valid Modes and Default Values”
on page 6-79.

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken into account
only if init_pointed is equal to SINGLE or MULTI.

<file> Element

Field Syntax

name filepath_or_filename

comment string

<scalar> Element

Field Syntax

name (**) name

line (*) line

base_type (*) intx

uintx

floatx

Attributes (***) volatile

extern

static

const

 XML Format of DRS File

6-77

Field Syntax

complete_type (*) type

init_mode MAIN_GENERATOR

IGNORE

INIT

PERMANENT

disabled

unsupported

init_modes_allowed (*) single value (****)
init_range range

disabled

unsupported

global_ assert YES

NO

disabled

unsupported

assert_range range

disabled

unsupported

comment(*) string

<pointer> Element

Field Syntax

Name (**) name

line (*) line

Attributes (***) volatile

extern

static

const

complete_type (*) type

init_mode MAIN_GENERATOR

IGNORE

INIT

PERMANENT

6 Emulating Your Runtime Environment

6-78

Field Syntax

disabled

unsupported

init_modes_allowed (*) single value (****)
initialize_ pointer May be:

NULL

Not NULL

NULL

number_ allocated single value

disabled

unsupported

init_pointed MAIN_GENERATOR

NONE

SINGLE

MULTI

disabled

comment string

<array> and <struct> Elements

Field Syntax

Name (**) name

line (*) line

complete_type (*) type

attributes (***) volatile

extern

static

const

comment string

<function> Element

Field Syntax

Name (**) name

line (*) line

 XML Format of DRS File

6-79

Field Syntax

main_generator_called MAIN_GENERATOR

YES

NO

disabled

attributes (***) static

extern

unused

comment string

Valid Modes and Default Values

Scope Type Init modes Gassert
mode

Initialize
pointer

Init allocated Default

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

Main
generator
dependant

Volatile
scalar

PERMANENT disabled PERMANENT
min..max

Base
type

Extern
scalar

INIT
PERMANENT

YES
NO

INIT
min..max

Struct Struct field Refer to field type

Global
variables

Array Array
element

Refer to element type

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependant

Volatile
pointer

un-
supported

un-
supported

un-
supported

Global
variables

Pointer

Extern
pointer

IGNORE
INIT

May be
NULL
Not NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

6 Emulating Your Runtime Environment

6-80

Scope Type Init modes Gassert
mode

Initialize
pointer

Init allocated Default

NULL
Pointed
volatile
scalar

un-
supported

un-
supported

Pointed
extern
scalar

INIT un-
supported

INIT
min..max

Pointed
other
scalars

MAIN_
GENERATOR
INIT

un-
supported

MAIN_
GENERATOR
dependant

Pointed
pointer

MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATOR
dependant

Pointed
function

un-
supported

un-
supported

Scalar
parameters

MAIN_
GENERATOR
INIT

un-
supported

INIT
min..max

Pointer
parameters

MAIN_
GENERATOR
INIT

un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Userdef
function

Other
parameters

Refer to parameter type

Scalar
parameter

disabled un-
supported

Pointer
parameters

disabled disabled NONE
SINGLE
MULTI

MULTI

Function
parameters

Stubbed
function

Pointed
parameters

PERMANENT un-
supported

PERMANENT
min..max

 XML Format of DRS File

6-81

Scope Type Init modes Gassert
mode

Initialize
pointer

Init allocated Default

Pointed
const
parameters

disabled un-
supported

Userdef
function

Return disabled un-
supported

disabled disabled

Scalar
return

PERMANENT un-
supported

PERMANENT
min..max

Function
return

Stubbed
function

Pointer
return

PERMANENT un-
supported

May be
NULL
Not NULL
NULL

NONE
SINGLE
MULTI

PERMANENT
May be
NULL max
MULTI

6-82

7

Preparing Source Code for
Verification

• “Stubbing Overview” on page 7-3
• “When to Provide Function Stubs” on page 7-4
• “Manual stubs” on page 7-5
• “Provide Stubs for Functions” on page 7-6
• “Stubbing Examples” on page 7-7
• “Automatic Stubbing Behavior for C++ Pointer/Reference” on page 7-10
• “Specify Functions to Stub Automatically” on page 7-12
• “Constrain Data with Stubbing” on page 7-14
• “Default and Alternative Behavior for Stubbing” on page 7-19
• “Function Pointer Cases” on page 7-21
• “Stub Functions with Variable Argument Number” on page 7-22
• “Stub Standard Library Functions” on page 7-24
• “Check Variable Ranges with assert” on page 7-25
• “Check Global Variable Ranges with Global Assert” on page 7-26
• “Model Variables External to Application” on page 7-28
• “External Variables” on page 7-29
• “Volatile Variables” on page 7-30
• “Absolute Addresses” on page 7-31
• “Data Rules” on page 7-32
• “Definitions and Declarations” on page 7-33
• “Prepare Code for Built-In Functions” on page 7-34
• “Model Tasks” on page 7-36
• “Model Tasks if main Contains Infinite Loop” on page 7-43

7 Preparing Source Code for Verification

7-2

• “Model Execution Sequence in Tasks” on page 7-47
• “Prevent Concurrent Access Using Temporally Exclusive Tasks” on page 7-51
• “Prevent Concurrent Access Using Critical Sections” on page 7-56
• “Requirements for Multitasking Verification” on page 7-62
• “Comment Code for Known Defects” on page 7-64
• “Comment Syntax for Marking Known Defects” on page 7-68
• “Check Acronyms” on page 7-72
• “Types Promotion” on page 7-74
• “Ignored Inline Assemblers” on page 7-77
• “Exclude Assembly Code if Compiler Generates Errors” on page 7-80
• “Stub Single Function Containing Assembly Code” on page 7-81
• “Stub Multiple Functions Containing Assembly Code” on page 7-82
• “Local Variables in Functions with Assembly Code” on page 7-84
• “Using memset and memcpy” on page 7-85

 Stubbing Overview

7-3

Stubbing Overview

A function stub is a piece of code that models a function whose body is not provided
during verification.

Stubs need not model the details of functions. Depending on your requirements, you can:

• Provide the function argument types and return types.
• Provide a bound on the function arguments and return values.
• Provide other details about how the function relates to the rest of the code.

Stubbing allows you to verify code before functions are developed. The more closely your
stub models the actual function, the more precise the verification results will be.

Unless you specify the option Inputs & Stubbing > No automatic stubbing,
Polyspace automatically stubs undefined functions.

7 Preparing Source Code for Verification

7-4

When to Provide Function Stubs

By default, Polyspace software automatically stubs undefined functions. Stub functions
manually when:

• You note that the automatic stubs do not represent your function arguments and
return values. For instance, the automatic stubs can return a broader range of values
than you want.

• You want your source code to be complete. If you specify the option No automatic
stubbing, verification stops if a function is not defined. This behavior allows you to
detect undefined functions.

• You want to reduce unproven code. Sometimes, automatic stubs do not provide
sufficient information to allow Polyspace to prove presence or absence of run-time
errors.

• Your function modifies global variables. Automatic stubs cannot model this behavior.

 Manual stubs

7-5

Manual stubs

If a function func represents:

• A timing constraint such as a timer set/reset, a task activation, a delay, or a counter
of ticks between two precise locations in the code, stub func with an empty action

void func(void) {

}

Polyspace takes into account scheduling and interleaving of concurrent execution.
Therefore, do not stub functions that set or reset a timer. Declare the variable
representing time as volatile.

• An I/O access, such as to a hardware port, a sensor, a read/write of a file, a read of an
EEPROM, or a write to a volatile variable, then,

• You do not need to stub a write access. If you want to do so, stub a write access to
an empty action (void func(void)).

• Stub read accesses to "read all possible values (volatile)".
• A write to a global variable, you may need to consider which procedures or functions

write to func and why. Do not stub the concerned func if:

• The variable is volatile.
• The variable is a task list. Such lists are accounted for by default because tasks

declared with the -task option are automatically modelled as though they have
been started. Write func manually if:

• The variable is a regular variable read by other procedures or functions.
• The variable is a read from a global variable. If you want Polyspace software to

detect that the variable is a shared variable, stub a read access. Copy the value
into a local variable.

7 Preparing Source Code for Verification

7-6

Provide Stubs for Functions

The following example shows a header for a missing function (which might occur, for
example, if the code is a subset of a project). The missing function copies the value of the
src parameter to dest so there would be a division by zero, a run-time error..

void main(void)

{

 a = 1;

 b = 0;

 a_missing_function(&a, b);

 b = 1 / a;

}

Due to the reliance on the software's default stub, the division is shown with an orange
warning because a is assumed to be anywhere in the full permissible integer range
(including 0). If the function is commented out, then the division would be a green "/ ".
You could only achieve a red "/ " with a manual stub.

Default Stubbing Manual Stubbing Function Ignored

void main(void)

{

 a = 1;

 b = 0;

 a_missing_function(&a,

b);

 b = 1 / a;

// orange division

}

void a_missing_function

(int *x, int y;)

{ *x = y; }

void main(void)

{

 a = 1;

 b = 0;

 a_missing_function(&a,

b);

 b = 1 / a;

// red division

void a_missing_function

(int *x, int y;)

{ }

void main(void)

{

 a = 1;

 b = 0;

 a_missing_function(&a,

b);

 b = 1 / a;

// green division

Due to the reliance on the software's default stub, the software ignores the assembly code
and the division " /" is green. You could only achieve the red division "/" with a manual
stub.

 Stubbing Examples

7-7

Stubbing Examples

The following examples consider the pros and cons of manual and automatic stubbing.

Example: Specification

typedef struct _c {

int cnx_id;

int port;

int data;

} T_connection ;

int Lib_connection_create(T_connection *in_cnx) ;

int Lib_connection_open (T_connection *in_cnx) ;

File: connection_lib Function: Lib_connection_create

param in None
param in/out in_cnx all fields might be changed in case of a

success

returns int 0 : failure of connection establishment

1 : success

Note: Default stubbing is suitable here.

Here are the reasons why:

• The content of the in_cnx structure might be changed by this function.
• The possible return values of 0 or 1 compared to the full range of an integer wont have much

impact on the Run-Time Error aspect. It is unlikely that the results of this operation will be
used to compute some mathematical algorithm. It is probably a Boolean status flag and if
so is likely to be stored and compared to 0 or 1. Therefore, the default stub does not have a
detrimental effect.

File: connection_lib Function: Lib_connection_open

param in T_connection

*in_cnx

in_cnx->cnx_id is the only parameter used

to open the connection, and is a read-only

parameter.

7 Preparing Source Code for Verification

7-8

File: connection_lib Function: Lib_connection_open

cnx_id, port and data remain unchanged

param in/out None
returns int 0 : failure of connection establishment

1 : success

Note: Default stubbing works here but manual stubbing would give more benefit.

Here are the reasons why:

• For the return value, default stubbing would be applicable as explained in the previous
example.

• Since the structure is a read-only parameter, it will be worth creating manually a stub that
reflects the behavior of the missing code. Benefits: Polyspace verification will find more red and
gray code

Note: Even in the examples above, it concerns some C code like; stubs of functions
members in classes follow same behavior.

Example: Colored Source Code

1 typedef struct _c {

2 int a;

3 int b;

4 } T;

5

6 void send_message(T *);

7 void main(void)

8 {

9 int i;

10 T x = {10, 20};

11 send_message(&x);

12 i = x.b /x.a; // orange with the default stubbing

13 }

Suppose that it is known that send_message does not write into its argument. The
division by x.a will be orange if default stubbing is used, warning of a potential division

 Stubbing Examples

7-9

by zero. A manual stub that accurately reflects the behavior of the missing code will
result in a green division instead, thus increasing the selectivity.

Manual stubbing examples for send_message:

void send_message(T *) {}

In this case, an empty function would be a sound manual stub.

7 Preparing Source Code for Verification

7-10

Automatic Stubbing Behavior for C++ Pointer/Reference

For parameters of a pointer/reference type, the behavior of automatically stubbed C+
+ functions differs from the behavior of automatically stubbed C functions. As a result,
automatic stubs for C++ do not always write to their arguments.

For C++, the software stubs functions by randomizing the contents of the object passed as
actual of the stubbed function, but does not modify the object pointed to by the actual (or
by one component of the actual if the latter is a struct/class object or an array).

Consider the following example:

extern void stub_def_pointer(struct S *p);

extern void stub_def_array(struct S *p);

int fx = 0, fw = 0;

struct S def = {"-dummy", &fx};

struct S def_array[] = {{ "-foo", &fw } };

assert(*(def.pvar) == 0); // GREEN

stub_def_pointer(&def);

assert(fx == 0); // GREEN because stubbed stub_def_pointer

 // does not write *(def.pvar)

assert(*(def_array[0].pvar) == 0); // GREEN

stub_def_array(def_array);

assert(fw == 0); // GREEN because stubbed stub_def_array

 // does not write *(def_array[0].pvar)

In this situation, you should manually stub the missing routine. For example, you could
stub stub_def_pointer and stub_def_array as follows:

volatile int rd;

void stub_def_pointer(struct S *p)

 {

 *(p->pvar) = rd; // write the object pointed to by p->pvar

 }

void stub_def_array(struct S *p)

 {

 int i = rd;

 for (i; i < rd; i++)

 Automatic Stubbing Behavior for C++ Pointer/Reference

7-11

 {

 *(p[i].pvar) = rd; // write the object pointed to

 // by p[i]->pvar

 i++;

 }

 }

Using these manual stubs, the verification result become:

assert(*(def.pvar) == 0); // GREEN

stub_def_pointer(&def);

assert(fx == 0); // ORANGE

assert(*(def_array[0].pvar) == 0); // GREEN

stub_def_array(def_array);

assert(fw == 0); // ORANGE

7 Preparing Source Code for Verification

7-12

Specify Functions to Stub Automatically

You can specify a list of functions that you want the software to stub automatically.

To specify functions to stub:

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of the Functions to stub view, click . The software creates a new

row.
3 In the new row, enter the name of a function that you want to stub. Enter one

function name per row.

Special Characters in Function Names

The following special characters are allowed for C functions:
() < > ; _

The following special characters are allowed for C++:
() < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.

Function Syntax for C++

When entering function names, two syntaxes are supported for C++:

• Basic syntax, with extensions for classes and templates:

Function Type Syntax

Simple function test

Class method A::test

Template method A<T>::test

• Syntax with function arguments, to differentiate overloaded functions. Function
arguments are separated with semicolons:

Function Type Syntax

Simple function test()

 Specify Functions to Stub Automatically

7-13

Function Type Syntax

Class method A::test(int;int)

Template method A<T>::test(T;T)

Note: Overloaded versions of the function will be discarded.

7 Preparing Source Code for Verification

7-14

Constrain Data with Stubbing

In this section...

“Add Precision Constraints Using Stubs” on page 7-14
“Default Behavior of Global Data” on page 7-15
“Constraining the Data” on page 7-15
“Apply the Technique” on page 7-16
“Integer Example” on page 7-16
“Recode Specific Functions” on page 7-17

Add Precision Constraints Using Stubs

You can improve the selectivity of your verification by using stubs to indicate that some
variables vary within functional ranges instead of the full range of the considered type.

You can apply this approach to:

• Parameters passed to functions.
• Variables that change from one execution to another (mostly globals), for example,

calibration data or mission specific data. These variables might be read directly
within the code, or read through an API of functions.

If a function returns an integer, default automatic stubbing assumes the function can
take any value from the full range of the integer type. This can lead to unproven code
(orange checks) in your results. You can achieve more precise results by providing a
manual stub that provides external data that is representative of the data expected when
the code is implemented.

There are a number of ways to model such data ranges within the code. The following
table shows some approaches.

with volatile and assert with assert and without
volatile

without assert, without
volatile, without "if"

#include <assert.h>

int stub(void)

{

 volatile int random;

#include <assert.h>

extern int other_func(void);

int stub(void)

{

extern int other_func(void);

int stub(void)

{

 Constrain Data with Stubbing

7-15

 int tmp;

 tmp = random;

 assert(tmp>=1 && tmp<=10);

 return

 int tmp;

 tmp= other_func();

 assert(tmp>=1 && tmp<=10);

 return

}

 int tmp;

 do {tmp= other_func();}

 while (tmp<1 || tmp>10);

 return tmp;

}

There is no particular advantage to any one of these approaches, except that the
assertions in the first two approaches can produce orange checks in your results.

Default Behavior of Global Data

Initially, consider how Polyspace verification handles the verification of global variables.

There is a maximum range of values which may be assigned to each variable as defined
by its type. By default, Polyspace verification assigns that full range for each global
variable, ensuring that a meaningful verification of such a variable can take place
even when the functions that write to it are not included. If a range of values was not
considered in these circumstances, such a variable would be assumed to have a value of
zero throughout.

Sometimes, to reflect practical use, it is helpful to limit the range of values assigned to
some variables . These ranges will be propagated to the whole call tree, and hence will
limit the number of “impossible values” that are considered throughout the verification.

This thinking does not just apply to global variables; it is equally appropriate where such
a variable is passed as a parameter to a function, or where return values from stubbed
functions are under consideration.

To some extent, the effectiveness of this technique is limited by compromises made
by Polyspace verification to deal with issues of code complexity. For instance, you
cannot assume that all of these ranges will be propagated throughout all function calls.
Sometimes, perhaps as a result of complex function interactions or constructions where
Polyspace verification is known to be imprecise, the potential value of a variable will
assume its full “type” range despite this technique having been applied.

Constraining the Data

Restricting data, such as global variables, to a functional range can be a useful technique
if the process can be automated. The technique may not be advantageous if the process
requires significant manual effort.

The technique requires:

7 Preparing Source Code for Verification

7-16

• A knowledge of the variables and the maximum ranges they may take in practice.
• A data dictionary in electronic format from which the variable names and their

minimum and maximum values can be extracted.

Apply the Technique

1 Create the range setting stubs:

a create 6 functions for each type (8,16 or 32 bits, signed and unsigned)
b declare 6 global volatile variables for each type
c write the functions which returns sub-ranges (an example follows)

2 Gather the initialization of relevant variables into a single procedure
3 Call this procedure at the beginning of the main. This should replace existing

initialization code.

Integer Example

volatile int tmp;

int polyspace_return_range(int min_value, int max_value)

{

int ret_value;

ret_value = tmp;

assert (ret_value>=min_value && ret_value<=max_value);

return ret_value;

}

void init_all(void)

{

x1 = polyspace_return_range(1,10);

x2 = polyspace_return_range(0,100);

x3 = polyspace_return_range(-10,10);

}

void main(void)

{

init_all();

while(1)

 Constrain Data with Stubbing

7-17

 {

 if (tmp) function1();

 if (tmp) function2();

 // ...

 }

}

Recode Specific Functions

Once data ranges have been specified (above), it may be beneficial to recode some
functions in support of them.

Sometimes, perhaps as a result of complex function interactions or constructions where
Polyspace verification is known to be imprecise, the potential value of a variable will
assume its full “type” range data ranges having been restricted. Recoding those complex
functions will address this issue.

Identify in the modules:

• API which read global variables through pointers

Replace this API:
 typedef struct _points {

 int x,y,nb;

 char *p;

 }T;

 #define MAX_Calibration_Constant_1 7

char Calibration_Constant_1[MAX_Calibration_Constant_1] = \

 { 1, 50, 75, 87, 95, 97, 100} ;

 T Constant_1 = { 0, 0,

 MAX_Calibration_Constant_1,

 &Calibration_Constant_1[0] } ;

 int read_calibration(T * in, int index)

 {

 if ((index <= in->nb) && (index >=0)) return in->p[index];

 }

 void interpolation(int i)

 {

 int a,b;

 a= read_calibration(&Constant_1,i);

 }

With this one:

7 Preparing Source Code for Verification

7-18

char Constant_1 ;

#define read_calibration(in,index) *in

void main(void)

{

Constant_1 = polyspace_return_range(1, 100);

}

void interpolation(int i)

{

int a,b;

a= read_calibration(&Constant_1,i);

}

• Points in the source code which expand the data range perceived by Polyspace
verification

• Functions responsible for full range data, as shown by the VOA (Value on assignment)
check.

if direct access to data is responsible, define the functions as macros.

#define read_from_data(param) read_from_data##param

int read_from_data_my_global1(void)

{ return [a functional range for my_global1]; }

Char read_from_data_my_global2(void)

{ }

• stub complicated algorithms, calibration read accesses and API functions reading
global data - as usual. For instance, if an algorithm is iterative - stub it.

• variables

• where the data range held by each element of an array is the same, replace that
array with a single variable.

• where the data range held by each element of an array differs, separate it into
discrete variables.

 Default and Alternative Behavior for Stubbing

7-19

Default and Alternative Behavior for Stubbing

External functions are assumed to have no effect (read, write) on global variables. Any
external function for which this assumption is not valid must be explicitly stubbed.

Consider the example int f(char *);.

When verifying this function, there are three options for automatic stubbing, as shown in
the following table.

Approach Worst Case Scenario in Stub

Default automatic stubbing int f(char *x)

{

 *x = rand();

 return 0;

}

pragma POLYSPACE_WORST int f(char *x)

{

 strcpy(x, "the quick

 brown fox, etc.");

 return &(x[2]);

}

pragma POLYSPACE_PURE int f(char *x)

{

 return strlen(x);

}

If the automatic stub does not accurately model the function using any of these
approaches, you can use manual stubbing to achieve more precise results.

PURE and WORST Stubbing Examples

The following table provides examples of stubbing approaches.

Initial Prototype With pragma
POLYSPACE_PURE

With pragma
POLYSPACE_WORST

Default Automatic
Stubbing

void f1(void); Do nothing
int f2

 (int u);
Returns [-2^31,
2^31-1]

Returns [-2^31, 2^31-1]

7 Preparing Source Code for Verification

7-20

Initial Prototype With pragma
POLYSPACE_PURE

With pragma
POLYSPACE_WORST

Default Automatic
Stubbing

int f3

 (int *u);
Returns [-2^31, 2^31-1]
and assumes the
ability to write into (int
*) u

Assumes the ability
to write into *u to any
depth and returns
[-2^31, 2^31-1]

int* f4

 (int u);
Returns an absolute
address (AA)

Returns AA or (int *)
u and assumes the
ability to write into (int
*) u

Returns an absolute
address

int* f5

 (int *u);
Returns an absolute
address

Returns [-2^31, 2^31-1]
and assumes the
ability to write into *u,
to any depth

Assumes the ability to
write into *u, to any
depth and returns an
absolute address

void f6

 (void (*ptr)(int),

param2)

The function pointed to by ptr is called with a
full-range random value for the integer. Rules for
param2 are the same as the preceding rules.

void f7

 (void (*ptr)(

param2)

Does nothing

This function is not stubbed. The parameter
(int *) associated with the function pointer is
too complicated for the software to stub it, and
verification stops. You must stub this function
manually.

Note: If (*ptr) contains a pointer as a parameter,
it is not stubbed automatically and with –
permissive-stubber, the function pointer ptr
is called with random as a parameter.

 Function Pointer Cases

7-21

Function Pointer Cases

Function Prototype Comments

void _reg(int);

int _seq(void *);

unsigned char bar(void){

 return 0;

}

void main(void){

 unsigned char x=0;

 _reg(_seq(bar));

}

Both functions, “_reg” and “_seq”, are automatically
stubbed, but the Polyspace software does not
exercise the call to the bar function.

The function that is a parameter is only called in
stubbed functions if the stubbed function prototype
contains a function pointer as parameter.

Because in this example, the stubbed function is a
“void *”, it is not a function pointer.

7 Preparing Source Code for Verification

7-22

Stub Functions with Variable Argument Number

Polyspace software can stub most vararg functions. However:

• This stubbing can generate imprecision in pointer verification.
• The stubbing causes a significant increase in complexity and in verification time.

There are three ways that you can deal with this stubbing issue:

• Stub manually
• On every varargs function that you know to be pure, add a #pragma

POLYSPACE_PURE "function_1". This action reduces greatly the complexity of
pointer verification tenfold.

For example:

#pragma POLYSPACE_PURE f

void main(void) {

 int x = 0;

 f(&x);

 assert (x == 0); // Green assertion,

 //orange without use of #pragma POLYSPACE_PURE

}

• Use #define to eliminate calls to functions. For example, functions like printf
generate complexity but are not useful for verification because they only display a
message.

For example:

#ifdef POLYSPACE

 #define example_of_function(format, args...)

#else

 void example_of_function(char * format, ...)

#endif

void main(void)

{

 int i = 3;

 example_of_function("test1 %d", i);

}

polyspace-code-prover-nodesktop -D POLYSPACE

 Stub Functions with Variable Argument Number

7-23

You can place this kind of line in any .c or .h file of the verification.

Note: Use #define only with functions that are pure.

7 Preparing Source Code for Verification

7-24

Stub Standard Library Functions

Polyspace provides the file __polyspace__stdstubs.c, which stubs functions of the
C standard library. During a verification, Polyspace uses the function stubs to generate
STD_LIB checks. These checks indicate whether the arguments of standard library
function calls in your code are valid. See “Invalid use of standard library routine”.

For more information about how you can use __polyspace__stdstubs.c, see
“Standard Library Function Stubbing Errors”.

 Check Variable Ranges with assert

7-25

Check Variable Ranges with assert

assert is a macro that aborts a program if the test performed inside the assert
statement is false.

You can use assert to constrain input variables to values within a particular range, for
example:

#include <stdlib.h>

int random(void);

int return_betweens_bounds(int min, int max)

{

 int ret; // ret is not initialized

 ret = random(); // ret ~ [-2^31, 2^31-1]

 assert ((min<=ret) && (ret<=max));

 // assert is orange because the condition may or may not

 // be fulfilled

 // ret ~ [min, max] here because all execution paths that don't

 // meet the condition are stopped

 return ret;

}

7 Preparing Source Code for Verification

7-26

Check Global Variable Ranges with Global Assert

Use the Global Assert mode to constrain the range of a global variable. In this mode,
Polyspace performs a Correctness condition check on each write access to the global
variable. After the write access, this check determines whether the variable is within the
range that you specified.

1 Run verification on your code. Open the results in the Results Manager perspective.
2 On the Source pane, select the Data Range Configuration tab.

Under the Global Variables node, you see a list of global variables.
3 For the global variable that you want to constrain, from the drop-down list on the

Global Assert column, select YES.
4 In the Global Assert Range column, enter the range in the format min..max. min

is the minimum value and max the maximum value for the global variable.
5

To save your specifications, click the button.

A Save Data Range Specifications (DRS) as window opens. Save your entries as
an xml file.

6 Return to the Project Manager perspective. On the Configuration pane, under
Inputs & Stubbing, in the Variable/function range setup field, enter the full
path to the xml file.

Instead of typing the location, you can use the button to navigate to the
location of the .xml file.

7 Rerun the verification and open the results.

For every write access on the global variable, you see a green, orange or red
Correctness condition check. If the check is:

• Green, the variable is within the range that you specified.
• Orange, the variable can be outside the range that you specified.
• Red, the variable is outside the range that you specified.

In a multitasking application, when two or more tasks access the same global
variable, if a Correctness condition check on a write access in one task turns
orange, the Correctness condition check on write accesses in all other tasks

 Check Global Variable Ranges with Global Assert

7-27

appear orange. The other orange checks appear even if the other write accesses do
not take the variable outside the Global Assert range.

See Also
“Variable/function range setup (C/C++)” | “Correctness condition”

Related Examples
• “Create Data Range Specification Template”

More About
• “DRS Configuration Settings”

7 Preparing Source Code for Verification

7-28

Model Variables External to Application

Express external variables using the keywords volatile and extern.

• A variable defined with keyword volatile can have any value allowed by its type.
The value can change at any time, even between two successive memory accesses.

• A variable declared with keyword extern and not initialized is presumed to be
defined elsewhere.

More About
• “External Variables”
• “Volatile Variables”

 External Variables

7-29

External Variables

Polyspace verification works on the principle that a global or static external variable
could take any value within the range of its type.

extern int x;

void f(void)

int y;

y = 1 / x; // orange because x ~ [-2^31, 2^31-1]

y = 1 / x; // green because x ~ [-2^31 -1] U [1, 2^31-1]

For more information on color propagation, refer to “Color Sequence of Checks”.

For external structures containing fields of type “pointer to function”, this principle leads
to red errors in the verification results. In this case, the resulting default behavior is that
these pointers do not point to any valid function. For meaningful results, you need to
define these variables explicitly.

7 Preparing Source Code for Verification

7-30

Volatile Variables

Polyspace verification assumes that hardware can assign a value to a volatile variable,
but will not de-initialize it. Therefore, NIV checks cannot be red.

volatile int x; // x ~ [-2^31, 2^31-1], although x has not been

initialised

• If x is a global variable, the NIV is green.
• If x is a local variable, the NIV is green if x is initialized by the code, and orange if x

has not been initialized by the code.

 Absolute Addresses

7-31

Absolute Addresses

The content of an absolute address is considered to be potentially uninitialized:

int y;

void f1(void) {

#define X (* ((int *)0x20000))

 X = 100;

 // Orange ABS_ADDR for address of X

 y = 1 / X;

 // Orange divison by zero as X is potentially unitialized

}

void f2(void) {

 int *p = (int *)0x20000;

 // Orange absolute address

 *p = 100;

 y = 1/ *p;

 }

7 Preparing Source Code for Verification

7-32

Data Rules

Data rules are design rules which dictate how modules and/or files interact with each
other.

For instance, consider global variables. It is not always apparent which global variables
are produced by a given file, or which global variables are used by that file. The excessive
use of global variables can lead to problems in a design. For example:

• File APIs (or functions accessible from outside the file) without procedure parameters.
• The requirement for a formal list of variables which are produced and used, as well as

the theoretical ranges they can take as input and/or output values.

 Definitions and Declarations

7-33

Definitions and Declarations

The definition and declaration of a variable are two different but related operations.

Definition

• for a function: the body of the function has been written: int f(void) { return
0; }

• for a variable: a part of memory has been reserved for the variable: int x; or
extern int x=0;

When a variable is not defined, the software considers the variable to be initialized,
and to have potentially any value in its full range. For more information, see “External
Variables”.

When a function is not defined, it is stubbed automatically.

Declaration

• for a function: the prototype: int f(void);
• for an external variable: extern int x;

A declaration provides information about the type of the function or variable. If the
function or variable is used in a file where it has not been declared, a compilation error
results.

7 Preparing Source Code for Verification

7-34

Prepare Code for Built-In Functions

In this section...

“Overview” on page 7-34
“Stubs of stl Functions” on page 7-34
“Stubs of libc Functions” on page 7-34

Overview

Polyspace software stubs functions that are not defined within the verification. Polyspace
software provides an accurate stub for the functions defined in the stl and in the
standard libc, taking into account functional aspects of the function.

Stubs of stl Functions

Functions of the stl are stubbed by Polyspace software. Using the -no-stl-stubs
option allows deactivating standard stl stubs (not recommended for further possible
scaling trouble).

Note: Allocation functions found in the code to analyze like new, new[], delete and
delete[] are replaced by internal and optimized stubs of new and delete. A warning is
given in the log file when such replace occurs.

Stubs of libc Functions

Functions are declared in the standard list of headers. You can redefine these functions
by invalidating the associated set of functions and providing new definitions in your code.

To invalidate standard functions, use:

• -D POLYSPACE_NO_STANDARD_STUBS for functions declared in Standard ANSI®

headers: assert.h, ctype.h, errno.h, locale.h, math.h, setjmp.h (setjmp
and longjmp functions are partially implemented — see Polyspace_Install/
polyspace/verifier/cxx/cinclude/__polyspace__stdstubs.c),
signal.h (signal and raise functions are partially implemented —
see Polyspace_Install/polyspace/verifier/cxx/cinclude/

 Prepare Code for Built-In Functions

7-35

__polyspace__stdstubs.c), stdio.h, stdarg.h, stdlib.h, string.h, and
time.h.

• -D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions declared only in
strings.h, unistd.h, and fcntl.h.

Note: You cannot redefine the following functions that deal with memory allocation:
malloc(), calloc(), realloc(), valloc(), alloca(), __built_in_malloc(), and
__built_in_alloca().

To invalidate a specific function, use -D __polyspace_no_function_name.

For example, if you want to redefine the fabs() function:

• For the verification, specify the option -D __polyspace_no_fabs.
• In the code, provide your fabs() function.

If your Include folders contain the standard header files stdio.h and string.h,
Polyspace may recognize your function declarations even if they do not exactly match the
standard declarations. For example, you might declare memset as:
void memset (void * ptr, unsigned int value, size_t num);

instead of:
void * memset (void * ptr, int value, size_t num);

In this case, a verification does not generate a compilation error. If your Include folders
do not contain stdio.h and string.h, you can activate this Polyspace feature by
specifying the option -D__polyspace_adapt_types_for_stubs. If your Include
folders contain stdio.h and string.h but you want to deactivate the feature, specify
the option -D__polyspace_static_types_for_stubs.

Note: If your function version differs from the standard function, the internal conversion
of parameters and return type during verification may cause a loss of precision.

7 Preparing Source Code for Verification

7-36

Model Tasks

This example shows how to prepare for verification of multitasking code. If your code
has functions that are intended for concurrent execution, you must specify them before
verification. For this example, save the following code in a file multitasking_code.c.

int a;

void performTaskCycle(void);

void task(void) {

 while(1) {

 performTaskCycle();

 }

}

void interrupt(int val) {

 a=val;

}

void main() {

}

The code has two functions intended for concurrent execution.

• The function task must execute indefinitely.
• The function interrupt can execute any number of times.

In this example, you learn what happens when you:

1 Run verification without specifying entry points.
2 Specify entry points but do not modify your code.
3 Modify code appropriately so that Polyspace can accept your entry points.

Run Non-Multitasking Verification

1 Create a Polyspace project. Add multitasking_code.c to the project.
2 On the Configuration pane, select Code Prover Verification. Then select Verify

whole application.
3 Run verification on your project. Open the results.

 Model Tasks

7-37

• On the Source pane Dashboard, you find that the verification covered only a
third of the procedures. This information indicates that task and interrupt
were not covered.

• If you click the Code covered by verification graph, you see task and
interrupt listed as Unreachable procedure.

7 Preparing Source Code for Verification

7-38

 Model Tasks

7-39

The verification did not cover task and interrupt because if you do not run a
multitasking verification, main is the only entry point. In this case, the main did not
call task and interrupt, so they are unreachable.

Run Multitasking Verification Without Modifying Tasks

1 On the Configuration pane, select Mulitasking. Select the Multitasking check
box.

2 Specify task and interrupt as Entry points.

a Click the button to create a text field.
b In each field, enter one function name.

The next verification recognizes that these functions are intended for concurrent
execution.

3 Run verification again. You get the following compilation error:

task 'interrupt' has non-void prototype

This error appears because functions specified as entry points must have the
prototype

void func(void)

If your entry point functions do not have this form, you must write a wrapper
function to encapsulate them. In this example, interrupt takes an int argument.
You must encapsulate it in a wrapper function.

Run Multitasking Verification After Modifying Tasks

1 Create a wrapper function interrupt_handler both argument and return
type void. Call interrupt inside interrupt_handler with a volatile int
argument. To do this:

a In a new file, enter the following code.

void interrupt_handler(void) {

 volatile int input = 0;

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt(input);

 }

}

7 Preparing Source Code for Verification

7-40

Polyspace considers that a volatile int variable can have any value allowed
by its type at any time during execution. By defining randomValue as a
volatile int variable, you specify that interrupt can run any number of
times. Also, you initialize randomValue to zero to prevent an orange Non-
initialized local variable check.

b Add the new file to your Polyspace project. Copy it to the module on which you
are running verification.

2 On the Configuration pane, select Multitasking. Replace the entry point
interrupt by interrupt_handler.

3 Run verification again. Open the results.

From the Procedure column on the Source pane Dashboard, you find that the
verification covered all procedures.

 Model Tasks

7-41

Polyspace recognizes that:

• Your code is intended for multitasking.
• task and interrupt_handler are the entry points to your code.

Related Examples
• “Model Tasks if main Contains Infinite Loop”
• “Model Execution Sequence in Tasks”
• “Prevent Concurrent Access Using Temporally Exclusive Tasks”
• “Prevent Concurrent Access Using Critical Sections”

7 Preparing Source Code for Verification

7-42

More About
• “Requirements for Multitasking Verification”

 Model Tasks if main Contains Infinite Loop

7-43

Model Tasks if main Contains Infinite Loop

This example shows how to model tasks if your main function contains an infinite loop.
Polyspace requires that before tasks begin, the main function has completed execution.
If you want your main to run concurrently with the tasks instead of completing before
them, your main function might already contain an infinite loop. If so, for precise
multitasking verification using Polyspace, you must modify your code. For this example,
use the following code:

void performTask1Cycle(void);

void performTask2Cycle(void);

void main() {

 while(1) {

 performTask1Cycle();

 }

}

void task2() {

 while(1) {

 performTask2Cycle();

 }

}

In this example, you learn what happens when you:

1 Specify entry points but retain an infinite loop in main.
2 Modify the main appropriately so that Polyspace can verify entry point functions.

Run Multitasking Verification Without Modifying Code

1 Save the code in a file multi.c.
2 Create a Polyspace project and add multi.c to it.
3 On the Configuration pane, specify the following analysis options:

a Select Code Prover Verification > Verify whole application.
b Select Multitasking > Multitasking.
c For Multitasking > Entry Points, specify task2. You do not have to specify

main because Polyspace considers main as an entry point by default.
4 Run verification and open the results. On the Results Summary pane, you find a

gray Function not reachable check on task2.

7 Preparing Source Code for Verification

7-44

Polyspace treats task2 as not reachable, even though you specified it as an entry point,
because the main function contains an infinite loop.

Run Multitasking Verification After Modifying Code

1 Replace the following portion of the code

void main() {

 while(1) {

 performTask1Cycle();

 }

}

with

void main() {

}

void task1() {

 while(1) {

 performTask1Cycle();

 }

}

2 Run verification again. Open the results.

From the Procedure column on the Source pane Dashboard, you find that the
verification covered all procedures.

 Model Tasks if main Contains Infinite Loop

7-45

Polyspace verifies both task1 and task2 because the main function executes to
completion.

Related Examples
• “Model Tasks”
• “Model Execution Sequence in Tasks”
• “Prevent Concurrent Access Using Temporally Exclusive Tasks”
• “Prevent Concurrent Access Using Critical Sections”

7 Preparing Source Code for Verification

7-46

More About
• “Requirements for Multitasking Verification”

 Model Execution Sequence in Tasks

7-47

Model Execution Sequence in Tasks

This example shows how to create a wrapper task for your functions so that they execute
in a specific sequence in the task. For this example, save the following code in a file
multi.c.

int var;

void reset(void) {

 var=0;

}

void inc(void) {

 var+=2;

}

void task1(void) {

 volatile int randomValue = 0;

 while(randomValue) {

 inc();

 }

}

void task2(void) {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 }

}

void main() {

}

In this example, you will learn what happens when you:

1 Specify entry points without modifying your code. The tasks execute in an arbitrary
sequence and can interrupt each other any time.

2 Create a new entry point so that the tasks execute in a definite sequence.
3 Modify the new entry point so that each task in the sequence might or might not

execute.

7 Preparing Source Code for Verification

7-48

Specify Entry Points

1 Create a Polyspace project and add multi.c to it.
2 On the Configuration pane, specify the following analysis options:

a Select Code Prover Verification > Verify whole application.
b Select the Multitasking > Multitasking box.
c For Multitasking > Entry Points, specify task1 and task2, each on its own

line.
3 Run verification and open the results.

An orange Overflow error appears on the addition operator in inc. The error is
not red because it does not occur along all execution paths. The error occurs only if
task1 executes sufficient number of times in succession without interruption from
task2.

Specify Definite Execution Sequence

Suppose that you want to model that reset executes after inc has executed five times.
This task sequence resets var after every five additions and prevents an overflow. To do
this:

1 In a separate file multi_sequence.c, define a new wrapper function task as
follows:

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 inc();

 inc();

 inc();

 inc();

 inc();

 reset();

 }

 }

2 Add multi_sequence.c to the project that you are running verification on.
3 On the Configuration pane, under Multitasking, do the following to the Entry

points list:

a Remove task1 and task2.

 Model Execution Sequence in Tasks

7-49

b Add task.
4 Run verification and open results.

The orange Overflow error does not appear in inc. The Overflow check is green.

Specify Indefinite Execution Sequence

Suppose, you want to model that reset can execute after inc has executed zero to five
times. This task sequence resets var after zero to five additions and also prevents an
overflow. To do this:

1 In the file multi_sequence.c, modify task as follows:

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 if(randomValue)

 inc();

 if(randomValue)

 inc();

 if(randomValue)

 inc();

 if(randomValue)

 inc();

 if(randomValue)

 inc();

 reset();

 }

 }

Because randomValue is a volatile variable, Polyspace considers that the
execution can enter or skip any of the five if branches.

2 Run verification and open the results.

Again, the Overflow check on the addition in inc is green.

Related Examples
• “Model Tasks”
• “Model Tasks if main Contains Infinite Loop”
• “Prevent Concurrent Access Using Temporally Exclusive Tasks”

7 Preparing Source Code for Verification

7-50

• “Prevent Concurrent Access Using Critical Sections”

More About
• “Requirements for Multitasking Verification”

 Prevent Concurrent Access Using Temporally Exclusive Tasks

7-51

Prevent Concurrent Access Using Temporally Exclusive Tasks

This example shows how to protect shared variables from concurrent access. A
shared variable is written or read by more than one task. Therefore, when the tasks
accessing this variable execute concurrently, the variable value at a given time can be
undetermined. To protect variables from concurrent access by multiple tasks:

• Specify that the tasks are temporally exclusive.
• If you do not want to specify the tasks as temporally exclusive, place read or write

access to those variables inside critical sections.

This example shows the first approach. For this example, save the following code in a file
multi.c.

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

 inc();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

7 Preparing Source Code for Verification

7-52

}

 void main() {

}

In this example, you will learn what happens when you:

1 Specify entry points and run verification. Your tasks can interrupt each other any
time.

2 Run verification after specifying temporally exclusive tasks.

View Unprotected Access in Polyspace Results

1 Create a Polyspace project and add multi.c to it.
2 On the Configuration pane, specify the following analysis options:

a Select Code Prover Verification > Verify whole application.
b Select the Multitasking > Multitasking check box.
c For Multitasking > Entry Points, specify task and interrupt_handler,

each on its own line.
3 Run verification and open the results.

On the Variable Access pane, you see the following:

• The node multi.shared_var representing the variable shared_var in the file
multi.c is orange.

• The Protection column is empty.

The global variable shared_var is not protected from concurrent access by tasks
task and interrupt_handler.

4
On the Variable Access pane, click the button.

 Prevent Concurrent Access Using Temporally Exclusive Tasks

7-53

You see a graphical view of the access on the global variable shared_var. The final
nodes of the graph are orange, indicating unprotected access.

Specify Temporally Exclusive Tasks

You can protect shared_var from concurrent access by making task and
interrupt_handler temporally exclusive tasks.

1 On the Configuration pane:

• Retain the analysis options from the previous verification.
• For the option Multitasking > Temporally exclusive tasks, click the

button. Enter task interrupt_handler.
2 Run verification and open your results.

On the Variable Access pane, you see the following:

• The node multi.shared_var representing the variable shared_var in the file
multi.c is green.

7 Preparing Source Code for Verification

7-54

• The Protection column entry against the node is Temporal exclusion.

Polyspace Code Prover has proved the protection of shared_var from concurrent
access.

3
On the Variable Access pane, click the button.

The final nodes of the graph are green indicating protected access.

4 On the Results Summary pane, there is still an orange Overflow error.

a Select this error.
b On the Source pane, place your cursor on the orange plus sign.

You see that the left operand can be 231-1.

Although Polyspace proves that shared_var is protected from concurrent access
by task and interrupt_handler, it does not take this fact into account during
verification. Therefore, it considers that an Overflow can occur if:

 Prevent Concurrent Access Using Temporally Exclusive Tasks

7-55

a Inside task, reset executes and assigns 0 to shared_var.
b interrupt_handler executes and assigns INT_MAX or 231-1 to shared_var.
c Inside task, inc executes and adds 2 to INT_MAX causing the overflow.

Related Examples
• “Prevent Concurrent Access Using Critical Sections”
• “Model Tasks”
• “Model Tasks if main Contains Infinite Loop”
• “Model Execution Sequence in Tasks”

More About
• “Requirements for Multitasking Verification”
• “Variable Access”

7 Preparing Source Code for Verification

7-56

Prevent Concurrent Access Using Critical Sections

This example shows how to protect shared variables from concurrent access. A
shared variable is written or read by more than one task. Therefore, when the tasks
accessing this variable execute concurrently, the variable value at a given time can be
undetermined. To protect variables from concurrent access by multiple tasks:

• Specify that the tasks are temporally exclusive.
• If you do not want to specify the tasks as temporally exclusive, place read or write

access to those variables inside critical sections.

This example shows the second approach. For this example, save the following code in a
file multi.c.

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

 inc();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

 Prevent Concurrent Access Using Critical Sections

7-57

}

 void main() {

}

In this example, you will learn what happens when you:

1 Specify entry points and run verification. Your tasks can interrupt each other any
time.

2 Protect two sections of code from interruption by each other using a critical section.
To implement the critical section, place the two sections of code between calls to the
same two functions.

View Unprotected Access in Polyspace Results

1 Create a Polyspace project and add multi.c to it.
2 On the Configuration pane, specify the following analysis options:

a Select Code Prover Verification > Verify whole application.
b Select the Multitasking > Multitasking check box.
c For Multitasking > Entry Points, specify task and interrupt_handler,

each on its own line.
3 Run verification and open the results.

On the Variable Access pane, you see the following:

• The node multi.shared_var representing the variable shared_var in the file
multi.c is orange.

• The Protection column is empty.

The global variable shared_var is not protected from concurrent access by tasks
task and interrupt_handler.

7 Preparing Source Code for Verification

7-58

4
On the Variable Access pane, click the button.

You see a graphical view of the accesses on the global variable shared_var. The
final nodes of the graph are orange, indicating unprotected access.

Specify Critical Sections

You can protect shared_var from concurrent access by placing the accesses inside a
critical section.

1 Save the following code in another file multi_critical_section.c.

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

 Prevent Concurrent Access Using Critical Sections

7-59

}

void take_semaphore(void);

void give_semaphore(void);

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 reset();

 inc();

 inc();

 give_semaphore();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 interrupt();

 give_semaphore();

 }

}

void main() {

}

The differences between multi.c and multi_critical_section.c are:

• There are two new functions take_semaphore() and give_semaphore() in
multi_critical_section.c with the prototype:

void func_name(void);

• The cycle code in functions task() and interrupt_handler() is between calls
to take_semaphore() and give_semaphore().

2 Add multi_critical_section.c to your project. Create a new module in your
project and copy the file to that module.

3 On the Configuration pane:

7 Preparing Source Code for Verification

7-60

• Retain the analysis options from the previous verification.
• For the option Multitasking > Critical section details, specify

take_semaphore as the Starting procedure and give_semaphore as the
Ending procedure.

4 Run verification on the module and open your results.

On the Variable Access pane, you see the following:

• The node multi_critical_section.shared_var representing the variable
shared_var in the file multi_critical_section.c is green.

• The Protection column entry against the node is Critical section.

The global variable shared_var is protected from concurrent access.
5

On the Variable Access pane, click the button.

The final nodes of the graph are green, indicating protected access.

6 On the Results Summary pane, there is still an orange Overflow error.

 Prevent Concurrent Access Using Critical Sections

7-61

a Select this error.
b On the Source pane, place your cursor on the orange + sign.

You see that the left operand can be 231-1.

Although Polyspace proves that shared_var is protected from concurrent access
by task and interrupt_handler, it does not take this fact into account during
verification. Therefore, it considers that an Overflow can occur if:

a Inside task, reset executes and assigns 0 to shared_var.
b interrupt_handler executes and assigns INT_MAX or 231-1 to shared_var.
c Inside task, inc executes and adds 2 to INT_MAX causing the overflow.

Related Examples
• “Prevent Concurrent Access Using Temporally Exclusive Tasks”
• “Model Tasks”
• “Model Tasks if main Contains Infinite Loop”
• “Model Execution Sequence in Tasks”

More About
• “Requirements for Multitasking Verification”
• “Variable Access”

7 Preparing Source Code for Verification

7-62

Requirements for Multitasking Verification

Your source code can contain functions that are intended to execute concurrently in
separate threads (tasks). Before you specify tasks to Polyspace, you must code them in
a specific format. If your code is already written and does not follow the format, you can
make minor adjustments to make your code suitable for multitasking verification. The
following table lists the requirements and points to examples of how you can satisfy those
requirements.

Requirement Example

The tasks must have the following prototype:

void func(void)

“Model Tasks”

The main function must not contain an
infinite loop or a run-time error. Polyspace
requires that before tasks begin, your main
function has completed execution.

“Model Tasks if main Contains Infinite
Loop”

If your task executes indefinitely in cycles, it
must contain an infinite loop.

“Model Tasks”

If your task acts as an interrupt that can
execute any number of times, it must contain
a loop with unspecified number of runs. Use
the following code in the task definition:

volatile int randomValue = 0;

while(randomValue) {

 /* Your task body goes here */

}

“Model Tasks”

If your interrupt occurs only after another
task has executed a certain number of times,
you can a create wrapper task to model this
sequence.

“Model Execution Sequence in Tasks”

If you want two sections of code to execute
without interruption from each other, you
can enclose them in the same critical section.
Place the two sections of code between calls
to the same two functions.

“Prevent Concurrent Access Using
Critical Sections”

 Requirements for Multitasking Verification

7-63

Requirement Example

If you want two tasks to execute without
interruption from each other, you can specify
them to be temporally exclusive.

“Prevent Concurrent Access Using
Temporally Exclusive Tasks”

7 Preparing Source Code for Verification

7-64

Comment Code for Known Defects

This example shows how to place comments in your code to mark defects that you are
already aware of but do not intend to fix immediately. Using your comments, Polyspace
populates the defect Classification, Status and Comment fields on the Results
Summary pane. After you have placed your comments in your code, you or another
reviewer can avoid reviewing the same defect twice. The example uses the following code
that is stored in a file divideByDifference.c.

#include <math.h>

int divideByDifference(int num, int x, int y)

{

 if(x >= y)

 return(num/(abs(x)-abs(y)));

 else

 return 0;

}

Verify Source File and Review Results

1 Create a new Polyspace project. Add the file divideByDifference.c to the project.
2

Click to start verification on your project.

The verification uses the default options on the Configuration pane. It uses a
generated main to call the function, divideByDifference.

3 Open the verification results. On the Results Summary pane, select:

• One of the two orange Invalid use of standard library routine errors. On the
Check Details pane, you can see an error message that the orange error on the
abs functions can be due to unbounded input values.

Enter the following review information for the error.

Column name Review Information

Classification Not a defect
Status No action planned
Comment Argument of abs is bounded.

• The orange Division by Zero error.

 Comment Code for Known Defects

7-65

Enter the following review information for the error.

Column name Review Information

Classification High
Status Investigate
Comment To check if x can be equal to

y.

Comment Code for STD_LIB error

1 On the Results Summary pane, right-click one of the orange Invalid use of
standard library routine errors. Select Add Pre-Justification to Clipboard.

This action copies your Classification, Status, and Comment in a form that you
can insert in your source code.

2 Using the paste option in your text editor, in the file divideByDifference.c,
paste what you copied just before the line return(num/(abs(x)-abs(y)));.

Your source code appears as follows:

#include <math.h>

int divideByDifference(int num, int x, int y)

{

 if(x >= y)

 /* polyspace<RTE:STD_LIB:Not a defect:No action planned>

Argument of abs is bounded. */

 return(num/(abs(x)-abs(y)));

 else

 return 0;

}

3 Run the verification again. Open your results.

On the Results Summary pane, both instances of Invalid use of standard
library routine on the line return(num/(abs(x)-abs(y))); have the
Classification, Status, and Comment that you entered.

Comment Code for OVFL error

1 In the file divideByDifference.c, edit the comment that you entered.

7 Preparing Source Code for Verification

7-66

Original Replace with

STD_LIB STD_LIB,OVFL

Not a defect Low

Argument of abs is bounded. Error does not occur for values

of x and y.

2 Run the verification again. Open your results.

On the Results Summary pane, the Overflow and Invalid use of standard
library routine checks on the line return(num/(abs(x)-abs(y))); have the
following review information:

Column name Review Information

Classification Low
Status No action planned
Comment Error does not occur for values

of x and y.

Comment Code for ZDV error

1 On the Results Summary pane, right-click the orange Division by Zero error.
Select Add Pre-Justification to Clipboard.

This action copies your Classification, Status, and Comment in a form that you
can insert in your source code.

2 In the file divideByDifference.c, paste what you copied after the already
existing comment.

Your source code appears as follows:

#include <math.h>

int divideByDifference(int num, int x, int y)

{

 if(x >= y)

 /* polyspace<RTE:STD_LIB,OVFL:Not a defect:

No action planned> Error does not occur for values of x and y. */

 /* polyspace<RTE:ZDV:High:Investigate>

To check if x can be equal to y. */

 return(num/(abs(x)-abs(y)));

 Comment Code for Known Defects

7-67

 else

 return 0;

}

3 Run the verification again. Open your results.

On the Results Summary pane, the Division by Zero error on the line
return(num/(abs(x)-abs(y))); has the Classification, Status, and Comment
that you entered. The other errors retain the earlier review information.

More About
• “Comment Syntax for Marking Known Defects”

7 Preparing Source Code for Verification

7-68

Comment Syntax for Marking Known Defects

You can place comments in your code to mark defects that you are already aware of but
do not intend to fix immediately. Using your comments, Polyspace populates the defect
Classification, Status and Comment fields of the Results Summary pane. After you
have placed your comments in your code, you or another reviewer can avoid reviewing
the same defects twice.

To place comments, you can:

• Use the right-click option Add Pre-Justification To Clipboard on the Results
Summary pane.

• Manually enter the comments in a specific syntax just before the line containing the
defect.

To comment:

• An individual line of code, use the following syntax:

/* polyspace<Defect:Kind1[,Kind2] : [Classification] : [Status] >

[Additional text] */

• A section of code, use the following syntax:

/* polyspace:begin<Defect:Kind1[,Kind2] : [Classification] : [Status] >

[Additional text] */

... Code section ...

/* polyspace:end<Defect:Kind1[,Kind2] : [Classification] : [Status] > */

The square brackets [] indicate optional information.

Replace Replace with

Runtime errors:
RTE

Defect

Coding rule violations:

• MISRA-C

• MISRA-AC-AGC

• MISRA-C3

 Comment Syntax for Marking Known Defects

7-69

Replace Replace with

• MISRA-CPP

• JSF

• Custom

Runtime errors:

Acronyms for checks such as ZDV, OVFL,
etc..

If you want the comment to apply to all
checks on the following line, specify ALL.

Kind1,Kind2,...

Coding rule violations:

Rule number. For more information, see:

• “MISRA C:2004 Coding Rules”
• “MISRA C:2012 Coding Directives and

Rules”
• “MISRA C++ Coding Rules”
• “JSF C++ Coding Rules”
• “Custom Naming Convention Rules”

If you want the comment to apply to all
coding rule violations on the following
line, specify ALL.

Classification Text that indicates the severity of the
defect. Enter one of the following:

• Unset

• High

• Medium

• Low

• Not a defect

This text populates the Classification
column on the Results Summary pane.

7 Preparing Source Code for Verification

7-70

Replace Replace with

Status Text that indicates how you intend to
correct the error in your code. Enter one
of the following or any other text:

• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Restart with different

options

• Other

• Undecided

This text populates the Status column on
the Results Summary pane.

Additional text Any text. This text populates the
Comment column on the Results
Summary pane.

Syntax Examples: Runtime Errors

• Non terminating call:

/* polyspace<RTE: NTC : Low : No Action Planned > Known issue */

• Division by zero:

/* polyspace<RTE: ZDV : High : Fix > Denominator cannot be zero */

Syntax Examples: Coding Rule Violations

• MISRA C rule violation:

/* polyspace<MISRA-C:6.3 : Low : Justify with annotations> Known issue */

• JSF C++ rule violation:

 Comment Syntax for Marking Known Defects

7-71

/* polyspace<JSF:9 : Low : Justify with annotations> Known issue */

Related Examples
• “Comment Code for Known Defects”

More About
• “Check Acronyms”

7 Preparing Source Code for Verification

7-72

Check Acronyms

The following table lists alphabetically the check acronyms that you must use in code
comments or custom software quality objectives:

Check Acronym

“Absolute address” ABS_ADDR

“C++ specific checks” CPP

“Correctness condition” COR

“Division by zero” ZDV

“Exception handling” EXC

“Function not called” FNC

“Function not reachable” FNR

“Function returns a value” FRV

“Illegally dereferenced pointer” IDP

“Initialized return value” IRV

“Inspection points” IPT

“Invalid use of standard library routine” STD_LIB

“Known non-terminating call” k_NTC

“Non-initialized local variable” NIVL

“Non-initialized pointer” NIP

“Non-initialized variable” NIV

“Non-null this-pointer in method” NNT

“Non-terminating call” NTC

“Non-terminating loop” NTL

“Object oriented programming” OOP

“Out of bounds array index” OBAI

“Overflow” OVFL

“Shift operations” SHF

“Unreachable code” UNR

 Check Acronyms

7-73

Check Acronym

“User assertion” ASRT

Related Examples
• “Comment Code for Known Defects”
• “Customize Software Quality Objectives”

More About
• “Comment Syntax for Marking Known Defects”

7 Preparing Source Code for Verification

7-74

Types Promotion

In this section...

“Unsigned Integers Promoted to Signed Integers” on page 7-74
“Promotions Rules in Operators” on page 7-75
“Example” on page 7-75

Unsigned Integers Promoted to Signed Integers

You need to understand the circumstances under which signed integers are promoted to
unsigned.

For example, the execution of the following code would produce an assertion failure and a
core dump.

#include <assert.h>

int f1(void) {

 int x = -2;

 unsigned int y = 5;

 assert(x <= y);

}

Implicit promotion explains this behavior. In this example, x <= y is implicitly:

((unsigned int) x) <= y /* implicit promotion since y is unsigned */

A negative cast into unsigned gives a large value. This value can never be <= 5, so the
assertion can never hold true.

In this second example, consider the range of possible values for x:

void f2(void)

volatile int random;

unsigned int y = 7;

int x = random;

assert (x >= -7 && x <= y);

assert (x>=0 && x<=7);

The first assertion is orange; it may cause an assert failure. However, given that the
range of x after the first assertion is not [-7 .. 7], but rather [0 .. 7], the second
assertion would hold true.

 Types Promotion

7-75

Promotions Rules in Operators

Familiarity with the rules applying to the standard operators of the C language helps
you to analyze those orange and red checks which relate to overflows on type operations.
Those rules are:

• Unary operators operate on the type of the operand.
• Shifts operate on the type of the left operand.
• Boolean operators operate on Booleans.
• Other binary operators operate on a common type. If the types of the two operands

are different, they are promoted to the first common type which can represent both of
them.

• Be careful of constant types.
• Be careful when verifying a operation between variables of different types without an

explicit cast.

Example

Consider the integer promotion aspect of the ANSI C standard (see 6.2.1 in ISO®/IEC
9899:1990). On arithmetic operators like +, -, *, % and / , an integer promotion is applied
on both operands. For verification, that can imply an OVFL or a UNFL orange check.

2 extern char random_char(void);

3 extern int random_int(void);

4

5 void main(void)

6 {

7 char c1 = random_char();

8 char c2 = random_char();

9 int i1 = random_int();

10 int i2 = random_int();

11

12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator

13 c1 = c1 + c2; // An OVFL/UNFL warning on the c1

14 // assignment [from int32 to int8]

15 }

Unlike the addition of two integers at line 12, an implicit promotion is used in the
addition of the two chars at line 13. Consider this second “equivalence” example.

7 Preparing Source Code for Verification

7-76

2 extern char random_char(void);

3

4 void main(void)

5 {

6 char c1 = random_char();

7 char c2 = random_char();

8

9 c1 = (char)((int)c1 + (int)c2); // Warning OVFL: due to

10 // integer promotion

11 }

An orange check represents a warning of a potential overflow (OVFL), generated on
the (char) cast [from int32 to int8]. A green check represents a verification that the +
operator does not produce an overflow (OVFL).

Integer promotion requires that the abstract machine must promote the type of each
variable to the integral target size before realizing the arithmetic operation and
subsequently adjusting the assignment type. See the preceding equivalence example of a
simple addition of two char.

Integer promotion respects the size hierarchy of basic types:

• char (signed or not) and signed short are promoted to int.
• unsigned short is promoted to int only if int can represent all possible values of an

unsigned short. If that is not the case (because of a 16-bit target, for example) then
unsigned short is promoted to unsigned int.

• Other types such as(un)signed int, (un)signed long int, and (un)signed long long int
promote themselves.

 Ignored Inline Assemblers

7-77

Ignored Inline Assemblers

Polyspace recognizes the following inline assemblers as introduction of assembly code.
During verification, it ignores the assembly code introduced by these assemblers.

• asm

Examples:

• int f(void)

{

 asm ("% reg val; mtmsr val;");

 asm("\tmove.w #$2700,sr");

 asm("\ttrap #7");

 asm(" stw r11,0(r3) ");

 assert (1); // is green

 return 1;

}

• int other_ignored2(void)

{

 asm "% reg val; mtmsr val;";

 asm mtmsr val;

 assert (1); // is green

 asm ("px = pm(0,%2); \

 %0 = px1; \

 %1 = px2;"

 : "=d" (data_16), "=d" (data_32)

 : "y" ((UI_32 pm *)ram_address):

"px");

 assert (1); // is green

}

• int other_ignored4(void)

{

 asm {

 port_in: /* byte = port_in(port); */

 mov EAX, 0

 mov EDX, 4[ESP]

 in AL, DX

 ret

 port_out: /* port_out(byte,port); */

 mov EDX, 8[ESP]

 mov EAX, 4[ESP]

 out DX, AL

7 Preparing Source Code for Verification

7-78

 ret }

assert (1); // is green

}

• __asm__

Examples:

• int other_ignored6(void)

{

#define A_MACRO(bus_controller_mode) \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop")

 assert (1); // is green

 A_MACRO(x);

 assert (1); // is green

 return 1;

}

• int other_ignored1(void)

{

 __asm

 {MOV R8,R8

 MOV R8,R8

 MOV R8,R8

 MOV R8,R8

 MOV R8,R8}

 assert (1); // is green

}

• int GNUC_include (void)

{

 extern int __P (char *__pattern, int __flags,

 int (*__errfunc) (char *, int),

 unsigned *__pglob) __asm__ ("glob64");

 __asm__ ("rorw $8, %w0" \

 : "=r" (__v) \

 : "0" ((guint16) (val)));

 __asm__ ("st g14,%0" : "=m" (*(AP)));

 __asm("" \

 : "=r" (__t.c) \

 : "0" ((((union { int i, j; } *) (AP))++)->i));

 Ignored Inline Assemblers

7-79

 assert (1); // is green

 return (int) 3 __asm__("% reg val");

}

• int other_ignored3(void)

{

 __asm {ldab 0xffff,0;trapdis;};

__asm {ldab 0xffff,1;trapdis;};

 assert (1); // is green

 __asm__ ("% reg val");

 __asm__ ("mtmsr val");

 assert (1); // is green

 return 2;

}

• #pragma asm #pragma endasm

Examples:

• int pragma_ignored(void)

{

 #pragma asm

 SRST

 #pragma endasm

 assert (1); // is green

}

• void test(void)

{

 #asm

 mov _as:pe, reg

 jre _nop

 #endasm

 int r;

 r=0;

 r++;

}

Related Examples
• “Exclude Assembly Code if Compiler Generates Errors”

7 Preparing Source Code for Verification

7-80

Exclude Assembly Code if Compiler Generates Errors
Polyspace ignores most assembly code during verification.

If Polyspace cannot parse assembly code during the Compile phase, use the command
line options -asm-begin and -asm-end to indicate assembly code sections.

Consider the following code.

1 int x=12;

2

3 void f(void)

4 {

5 #pragma will_be_ignored

6 x =0;

7 x= 1/x; // no color is displayed

8 // not even C code

9 #pragma was_ignored

10 x++;

11 x=15;

12 }

13

14 void main (void)

15 {

16 int y;

17 f();

18 y = 1/x + 1 / (x-15); // Red ZDV, x is equal to 15

19

20 }

The verification ignores text or code placed between the two #pragma statements if you
specify the following options:
-asm-begin will_be_ignored -asm-end was_ignored

This approach allows an unsupported assembly code section to be ignored without
changing the meaning of the original code.

See Also
“-asm-begin -asm-end”

More About
• “Ignored Inline Assemblers”

 Stub Single Function Containing Assembly Code

7-81

Stub Single Function Containing Assembly Code

The software automatically stubs a function that is preceded by asm, even if a body is
defined.
asm int h(int tt) // function h is stubbed even if body is defined

{

 % reg val; // ignored

 mtmsr val; // ignored

 return 3; // ignored

};

void f(void) {

 int x;

 x = h(3); // x is full-range

}

7 Preparing Source Code for Verification

7-82

Stub Multiple Functions Containing Assembly Code

The functions that you specify through the following pragma are stubbed automatically,
even if function bodies are defined:
#pragma inline_asm(list of functions)

The following code provides examples:

#pragma inline_asm(ex1, ex2)

 // The functions ex1 and ex2 are

 // stubbed, even if their bodies are defined

int ex1(void)

{

 % reg val;

 mtmsr val;

 return 3; // ignored

};

int ex2(void)

{

 % reg val;

 mtmsr val;

 assert (1); // ignored

 return 3;

};

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)

{

 % reg val;

 mtmsr val; // ignored

 return 3;

};

void f(void) {

 int x;

 x = ex1(); // ex1 is stubbed : x is full-range

 x = ex2(); // ex2 is stubbed : x is full-range

 x = ex3(); // ex3 is stubbed : x is full-range

 Stub Multiple Functions Containing Assembly Code

7-83

}

7 Preparing Source Code for Verification

7-84

Local Variables in Functions with Assembly Code

In functions containing assembly code, the software treats local variables that are not
explicitly initialized as potentially initialized variables.

Consider the following function.
1 inline int f(void) {

2 int r;

3 asm("mov 4%0,%%eax"::"m"(r));

4 return r; // orange NIVL (red NIVL before 12a) because r is not initialized

5 }

The software treats r as a potentially initialized variable. Verification generates an
orange NIVL check for r.

Consider another function.
1 int dummy(void) {

2 int g,h;

3 h = g * 2; // orange NIVL for g (red NIVL before 12a)

4 h = 2; // h is assigned the value 2

5 asm("int $0x3");

6 asm("mov 4%0,%%eax"::"m"(g));

7 asm("movss 4%0,%%xmm1"::"m");

8 return h; // value returned is 2

9 }

In line 3, the variable g is not initialized. Verification:

• Generates an orange NIVL check for g.
• Assigns a full-range value to g.

 Using memset and memcpy

7-85

Using memset and memcpy

In this section...

“Polyspace Specifications for memcpy” on page 7-85
“Polyspace Specifications for memset” on page 7-87

Polyspace Specifications for memcpy

Syntax:

#include <string.h>

void * memcpy (void * destinationPtr, const void * sourcePtr, size_t num);

If your code uses the memcpy function, see the information in this table.

Specification Example

Polyspace runs a Invalid use of standard
library routine check on the function. The
check determines if the memory block that
sourcePtr or destinationPtr points
to is greater than or equal in size to the
memory assigned to them through num.

In the following code, Polyspace produces
a red Invalid use of standard library
routine error because:

• d is an int variable.
• sizeof(S) is greater than

sizeof(int).
• A memory block of size sizeof(S) is

assigned to &d.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

void main() {

 S s;

 int d;

 memcpy(&d, &s, sizeof(S));

}

7 Preparing Source Code for Verification

7-86

Specification Example

Polyspace does not check if the memory
that sourcePtr points to is itself
initialized.

In the following code, Polyspace does not
produce a red Non-initialized local
variable error when the memcpy function
copies s to d.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

void main() {

 S s, d;

 memcpy(&d, &s, sizeof(S));

 func(d.b);

}

Following the use of memcpy, Polyspace
considers that the variables that
destinationPtr points to can have any
value allowed by their type.

In the following code, Polyspace considers
that the fields of d can have any value
allowed by their type. For instance, d.b
can have any value in the range allowed for
an int variable.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

void main() {

 S s, d={'a',1};

 int val;

 val = d.b; // val=1

 memcpy(&d, &s, sizeof(S));

 val = d.b;

 // val can have any int value

}

 Using memset and memcpy

7-87

Polyspace Specifications for memset

Syntax:

#include <string.h>

void * memset (void * ptr, int value, size_t num);

If your code uses the memset function, see the information in this table.

Specification Example

Polyspace runs a Invalid use of standard
library routine check on the function.
The check determines if the memory block
that ptr points to is greater than or equal
in size to the memory assigned to them
through num.

In the following code, Polyspace produces
a red Invalid use of standard library
routine error because:

• val is an int variable.
• sizeof(S) is greater than

sizeof(int).
• A memory block of size sizeof(S) is

assigned to &val.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 int val;

 memset(&val,0,sizeof(S));

}

If value is 0, following the use of memset,
Polyspace considers that the variables that
ptr points to have the value 0.

In the following code, Polyspace considers
that following the use of memset, each field
of s has value 0.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 S s;

7 Preparing Source Code for Verification

7-88

Specification Example
 int val;

 memset(&s,0,sizeof(S));

 val=s.b; //val=0

}

If value is anything other than 0,
following the use of memset, Polyspace
considers that:

• The variables that ptr points to can be
non-initialized.

• If initialized, the variables can have any
value allowed by their type.

In the following code, Polyspace considers
that following the use of memset, each field
of s has any value allowed by its type. For
instance, s.b can have any value in the
range allowed for an int variable.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 S s;

 int val;

 memset(&s,1,sizeof(S));

 val=s.b;

 // val can have any int value

}

8

Running a Verification

• “Types of Verification” on page 8-2
• “Select Analysis Options Configuration” on page 8-3
• “Check for Compilation Problems” on page 8-4
• “Start Local Verification” on page 8-6
• “Start Remote Verification” on page 8-7
• “Stop Verification” on page 8-8
• “Phases of Verification” on page 8-9
• “Run File-by-File Verification” on page 8-10
• “Run File-by-File Batch Verification” on page 8-11
• “Verify All Modules in Project” on page 8-13
• “Manage Previous Verifications With Polyspace Metrics” on page 8-14
• “Manage Remote Verifications” on page 8-17
• “Monitor Progress of Verification” on page 8-18
• “Run Verification from Command Line” on page 8-19
• “Manage Remote Analyses at the Command Line” on page 8-20
• “Modularization of Large Applications” on page 8-22
• “Partition Application into Modules” on page 8-23
• “Choose Number of Modules for Application” on page 8-25
• “Partition Application Using Batch Command” on page 8-27

8 Running a Verification

8-2

Types of Verification

You can run a local or remote verification. You can specify the type of verification on the
Configuration pane.

Verification
type

How to specify verification Use when

1 Select Distributed Computing.
2 Select Batch.

You want to run verification on a
dedicated remote server. Possible
reasons:

• You want to free execution time on
your local machine.

• You want to shut down your local
machine but not interrupt the
verification.Remote

1 Select Distributed Computing.
2 Select Add to results repository.

You want to generate metrics for your
project. Through these metrics, you
can:

• Monitor evolution of run-time
errors over multiple verifications.

• Monitor evolution of code metrics
over multiple verifications.

Local
1 Select Distributed Computing.
2 Clear Batch.

You want to run verification on your
local machine.

 Select Analysis Options Configuration

8-3

Select Analysis Options Configuration

Each module in the Project Browser can contain multiple configurations, with each
configuration specifying a set of analysis options. This allows you to verify the same
source files multiple times using different analysis options for each verification.

If you have created multiple configurations, you must choose a configuration before
starting a verification.

To specify the configuration for a verification:

1 In the Project Browser, select the module you want to run.
2 In the Configuration folder of the module, right-click the configuration that you

want to use. Select Set as Default.

When you start the verification, the software uses the analysis options from this
configuration.

For more information, see “Specify Analysis Options”.

8 Running a Verification

8-4

Check for Compilation Problems

During a verification, if the Compilation Assistant detects compilation errors, the
verification stops and the software displays errors and possible solutions on the Output
Summary.

To check your project for compilation problems:

1 Select Tools > Preferences.
2 In the Polyspace Preferences dialog box, click the Project and Results Folder tab.
3 Select Use Compilation Assistant.
4

On the Project Manager toolbar, click .

The software compiles your code and checks for errors, and reports the results on the
Output Summary tab.

5 Select a Suggestion/Remark cell to see a list of possible solutions for the problem.

In this example, you can either add the missing include files, or set options to
compile the code without the missing include files:

• Select Apply to set the selected option for your project. The software
automatically sets the option.

• Select Add to add suggested include folders to your project. The Add Source Files
and Include Folders dialog box opens, allowing you to add additional include
folders.

 Check for Compilation Problems

8-5

When you have addressed compilation problems, run the verification again.

The Compilation Assistant is automatically disabled if you specify one of the following
options:

• -unit-by-unit

• -post-preprocessing-command

8 Running a Verification

8-6

Start Local Verification

To start a verification on your local computer:

1 In the Project Manager perspective, from the Project Browser view, select the
module you want to verify.

2 On the Configuration pane, select Distributed Computing.
3 By default, Batch is not selected. However, if this check box is selected, you must

clear the check box.
4

On the Project Manager toolbar, click .

You can monitor the progress of the verification through the Output Summary and
Full Log tabs. See “Monitor Progress of Verification” on page 8-18.

 Start Remote Verification

8-7

Start Remote Verification

Before you run a remote verification, you must set up a server for this purpose. For more
information, see “Set Up Remote Verification and Analysis”.

To start a remote verification:

1 In the Project Manager perspective, on the Project Browser pane, select the
module you want to verify.

2 On the Configuration pane, select Distributed Computing.
3 Select Batch. The software runs the verification on your computer cluster.
4

On the Project Manager toolbar, click .

On the local host computer, the Polyspace Code Prover software performs code
compilation and coding rule checking . Then the Parallel Computing Toolbox™
software submits the verification to the MATLAB job scheduler (MJS) on the head
node of the MATLAB Distributed Computing Server™ cluster. For more information,
see “Phases of Verification” on page 8-9.

Note: If you see the message Verification process failed, click OK. For more
information on errors related to remote verification, see “Polyspace Cannot Find the
Server”.

By default, the software also selects Add to results repository, which enables the
generation of Polyspace Metrics. If you clear this check box, the software does not
generate Polyspace Metrics but downloads results automatically after the verification is
complete.

To monitor progress and manage the verification, see “Manage Remote Verifications” on
page 8-17.

8 Running a Verification

8-8

Stop Verification

In this section...

“Stop Remote Verification” on page 8-8
“Stop Local Verification” on page 8-8

Stop Remote Verification

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification. From the context menu,

select Remove From Queue.

For more information, see “Manage Previous Verifications With Polyspace Metrics”.

Stop Local Verification

To stop a local verification:

1 On the Project Manager toolbar, click the Stop button.

A warning dialog box opens.

2 Click Yes. The verification stops, and results are incomplete. If you start another
verification, the verification starts from the beginning.

 Phases of Verification

8-9

Phases of Verification

A verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because Polyspace software is
compiler-independent, it helps you to produce code that is portable, maintainable,
and compliant with ANSI standards.

2 Generating a main if the Polyspace software does not find a main and you have
selected the Verify module option. For more information about generating a main,
see:

• “Verify module (C)” — C verification
• “Verify module (C++)” — C++ verification

3 Analyzing the code for run-time errors and generating color-coded results.

8 Running a Verification

8-10

Run File-by-File Verification

This example shows how to verify each file independently of other files in the module.
You can run a file-by-file verification in one of the following ways:

• You can run the verification in batch mode on a server. When you run a verification
in batch mode, your verification is queued on the server after it is past the Compile
phase.

• You can run the verification directly without queuing it on a server.

This example shows how to run file-by-file verification directly without queuing it on a
server.

1 On the Configuration pane, specify that each file must be verified independently of
other files.

a Select the Code Prover Verification node.
b Select Verify files independently.
c For Common source files, enter files that you want to include with verification

of each file. Enter the full path to a file. Enter one file path per row.

For example, if multiple files use a function, you must include the file containing
the function definition as a common source file. Otherwise, Polyspace stubs the
undefined functions leading to more orange checks.

2 On the Project Manager toolbar, click Run.

On the Output Summary pane, you can see that after the Compile phase, each file
is verified independently.

3 After verification, open your results. For more information, see “Open Results of File-
by-File Verification”.

See Also
“Verify files independently (C/C++)” | “Common source files (C/C++)”

Related Examples
• “Run File-by-File Batch Verification”
• “Open Results of File-by-File Batch Verification”

 Run File-by-File Batch Verification

8-11

Run File-by-File Batch Verification

This example shows how to verify each file independently of other files in the module.
You can run a file-by-file verification in one of the following ways:

• You can run the verification in batch mode on a server. When you run a verification
in batch mode, your verification is queued on the server after it is past the Compile
phase.

• You can run the verification directly without queuing it on a server.

This example shows how to run file-by-file verification in batch mode.

1 Set up batch verification. As the server, you can use either your local computer or
a remote computer. If you use your local computer as a server, you cannot exit the
Polyspace user interface till the verification is over.

• To set up remote batch verification, see “Configure Polyspace Preferences”.
• To set up local batch verification, select Tools > Preferences. On the Server

Configuration tab, for Job scheduler host name, enter local.
2 On the Configuration pane, specify batch verification.

a Select the Distributed Computing node.
b Select Batch.
c Select Add to results repository.

After verification, your results are uploaded to Polyspace Metrics. Once the
results are uploaded, you can download the results from Polyspace Metrics to
another computer.

3 On the Configuration pane, specify that each file must be verified independently of
other files.

a Select the Code Prover Verification node.
b Select Verify files independently.
c For Common source files, enter files that you want to include with verification

of each file. Enter the full path to a file. Enter one file path per row.

For example, if multiple files use a function, you must include the file containing
the function definition as a common source file. Otherwise, Polyspace stubs the
undefined functions leading to more orange checks.

8 Running a Verification

8-12

4 On the Project Manager toolbar, click Run.

• If you are running remote batch verification, the Parallel Computing Toolbox
software submits the verification units as separate jobs to your scheduler. The
scheduler is on the head node of the MATLAB Distributed Computing Server
cluster.

• If you are running local batch verification, the Parallel Computing Toolbox
software stores the verification units as separate jobs on your local computer.

After the Compile phase, you can view the jobs in the Polyspace Job Monitor.
5 Select Tools > Open Job Monitor.

Your files appear as child nodes under the main verification node.
6 After verification, open your results. For more information, see “Open Results of File-

by-File Batch Verification”.

See Also
“Batch (C/C++)” | “Verify files independently (C/C++)” | “Common source files (C/C++)”

Related Examples
• “Run File-by-File Verification”
• “Open Results of File-by-File Verification”

 Verify All Modules in Project

8-13

Verify All Modules in Project

You can have many modules within a project, each module containing a set of source files
and an active configuration.

To verify all modules in a project:

1 In the Project Manager perspective, on the Project Browser pane, select the project
for which you want to run verifications.

2 Select Run > Run All Modules.

The software verifies each module as an individual job. For information on the
verification process, see “Phases of Verification” on page 8-9.

Note: If the verification fails, go to “Troubleshooting in Polyspace Code Prover”.

8 Running a Verification

8-14

Manage Previous Verifications With Polyspace Metrics

Use the Runs view of Polyspace Metrics to administer previous remote verifications. For
example, you can:

• Delete verification results from the results repository.
• Set or change the password for projects.

To open the Runs view of Polyspace Metrics, in the address bar of your Web browser,
enter the following URL:

protocol://ServerName:PortNumber

• protocol is either http (default) or https.
• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080).

To perform a task:

1 Right-click your verification.
2 From the context menu, select your task.

The following table describes the tasks that you can perform.

 Manage Previous Verifications With Polyspace Metrics

8-15

Task Details

Rename Available only for Project and Version. When you
select this menu item, the text becomes editable.
Enter your new project name or version number.
Then press Return.

Delete Run from Repository Remove verification from Polyspace Metrics results
repository.

Go to Metrics Page Open the Polyspace Metrics Summary view of the
verification.

Change/Set Password Control access to the metrics for the project by
specifying a password. See “Protect Access to Project
Metrics”.

In the Runs view, you can use Polyspace Metrics controls to specify the list of
verifications displayed.

Control Details

From If you click the field, the software displays a
calendar. Use this calendar to select the start date
for your list.

To If you click the field, the software displays a
calendar. Use this calendar to select the end date of
for your list.

Maximum number of runs Specify the maximum number of verifications that
you want to display. The default is 30.

ID If you enter a numeric string in the field, the
software displays verifications with IDs that contain
this string.

Project If you enter a string in the field, the software
displays verifications with project names that contain
this string.

Product Polyspace Metrics displays results from Polyspace
Bug Finder analyses and Polyspace Code Prover
verifications. To display only verifications, from the
drop-down list, select Code Prover.

8 Running a Verification

8-16

Control Details

Mode Use the drop-down list to select verifications that are
either Integration or Unit By Unit. By default,
both verification types are displayed.

Language Use the drop-down list to select language type.
By default, verifications for all language types are
displayed.

Version If you enter a string in the field, the software
displays verifications with version numbers that
contain this string.

Date If you enter a string in the field, the software
displays verifications with dates that contain this
string.

Author If you enter a string in the field, the software
displays verifications with author names that contain
this string.

Status Use the drop-down list to select verifications with a
specific status, for example, completed (PASS4).

 Manage Remote Verifications

8-17

Manage Remote Verifications

You can manage your verification through the Polyspace Job Monitor:

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification.
3 From the context menu, select your management task:

• View Log File — Open the verification log.
• Download Results — Download verification results from remote computer if the

verification is complete.
• Remove From Queue — Remove verification from the submission queue.

8 Running a Verification

8-18

Monitor Progress of Verification

To monitor the progress of a remote verification, open the verification log:

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification.
3 From the context menu, select View Log File.

To monitor the progress of a local verification, use the following tabs in the Project
Manager perspective of Polyspace Code Prover:

• Output Summary — Displays progress of verification, compile phase messages and
errors. To search for a term, in the Search field, enter the required term. Click the up
or down arrow to move sequentially through occurrences of the term.

• Full Log — This tab displays messages, errors, and statistics for all phases of the
verification. To search for a term, in the Search field, enter the required term. Click
the up arrow or down arrow to move sequentially through occurrences of this term.

At the end of a local verification, the Dashboard tab displays statistics, for example,
code coverage and check distribution.

 Run Verification from Command Line

8-19

Run Verification from Command Line

Use the following command to run a local verification:

MATLAB_Install\polyspace\bin\polyspace-code-prover-nodesktop [options]

Use the following command to run a remote verification:

MATLAB_Install\polyspace\bin\polyspace-code-prover-nodesktop

-batch -scheduler NodeHost | MJSName@NodeHost [options]

• MATLAB_Install is your MATLAB installation folder, for example:

C:\Program Files\MATLAB\R2013b

• NodeHost is the name of the computer that hosts the head node of your MDCS
cluster.

• MJSName is the name of the MATLAB Job Scheduler (MJS) on the head node host.

Note: Before you run a remote verification, you must set up a server for this purpose. For
more information, see “Set Up Remote Verification and Analysis”.

You can also run verifications from the MATLAB Command Window using the
polyspaceCodeProver command. For information about this command, in the
MATLAB Command Window, enter:

polyspaceCodeProver('-help');

8 Running a Verification

8-20

Manage Remote Analyses at the Command Line

To manage remote analyses, use this command:

MATLAB_Install\polyspace\bin\polyspace-jobs-manager action [options]

 [-scheduler schedulerOption]

MATLAB_Install is your MATLAB installation folder, for example:

C:\Program Files\MATLAB\R2014a

schedulerOption is one of the following:

• Name of the computer that hosts the head node of your MDCS cluster (NodeHost).
• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Clusters and Cluster Profiles”

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

The following table lists the possible action commands to manage jobs on the scheduler.

Action Options Task

listjobs None Generate a list of Polyspace jobs on the
scheduler. For each job, the software produces
the following information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted job.
• APPLICATION — Name of Polyspace

product, for example, Polyspace Code Prover
or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results folder on
local computer, specified through the Tools
> Preferences > Server Configuration
tab.

• WORKER — Local computer from which job
was submitted.

 Manage Remote Analyses at the Command Line

8-21

Action Options Task

• STATUS — Status of job, for example,
running and completed.

• DATE — Date on which job was submitted.
• LANG — Language of submitted source code.

download -job ID -results-
folder FolderPath

Download results of analysis with specified ID
to folder specified by FolderPath.

getlog -job ID Open log for job with specified ID.
remove -job ID Remove job with specified ID.

8 Running a Verification

8-22

Modularization of Large Applications

The source code within your project may represent a single application. In this case, you
might want to analyze all of the code together. However, if the application is extremely
large, the verification might take a long time, for example, days.

For a large application, Polyspace allows you to:

• Partition the application into modules that individually require less time to verify —
see “Partition Application into Modules” on page 8-23 and “Partition Application
Using Batch Command” on page 8-27.

• Specify the number of modules in a trade-off between verification speed and precision
— see “Choose Number of Modules for Application” on page 8-25.

Polyspace Model Link products do not support modularization of applications.

You can carry out faster analysis with a larger number of small modules. However, with
more modules, greater cross-module referencing is required during verification, which
results in a loss of precision.

Note: During partitioning, the software automatically minimizes cross-module
references.

 Partition Application into Modules

8-23

Partition Application into Modules

To partition your application into modules:

1 Run an initial verification, which performs a limited analysis but processes all
the files of your application. For example, run a verification with the following
Precision pane settings:

• Precision level — 0
• Verification level — Software Safety Analysis level 0

2 In the Project Browser view, select the results folder.
3 From the Project Manager toolbar, select Tools > Run Modularize. The software

analyzes your application code and displays two plots in a new Modularization
choices window.

The plots show the following information:

• Red — Maximum complexity of a module versus number of modules, which is
expressed as a percentage of the total complexity of the application.

8 Running a Verification

8-24

• Blue — Number of public variables and functions when modules are limited by a
given complexity.

4 From the plots, identify the number of modules into which your application must be
partitioned. See “Choose Number of Modules for Application” on page 8-25. In
this example, a suitable number is 2 or 4.

5 Click the vertical gray region associated with the number of modules that you
choose, for example, 2. A dialog box opens.

6 Click Yes. The software generates a new project with two modules containing the
partitioned code.

You can now verify each module separately — with the precision and verification levels
that you require. The configuration (.psprj) file for each module specifies the default
values:

• Precision level — 2
• Verification level — Software Safety Analysis level 4

You can change these values through the Configuration > Precision pane.

 Choose Number of Modules for Application

8-25

Choose Number of Modules for Application

Use the Modularizing choices window to select the number of partitioned modules.
The number of partitioned modules that you choose involves a trade-off between the
following:

• Time — The smaller the maximum complexity, the shorter the time required for
verification. This time saving is even greater if the different modules are verified in
parallel.

• Precision — The smaller the number of public variables and functions, the greater the
precision of the verification.

Select a number just after a big drop in maximum complexity and before a big increase
in the number of public functions and variables. In the following example, you must click
the gray region associated with either 2 (just after a big drop in maximum complexity) or
4 (before a big increase in public functions and variables).

The precision of a modular verification can be very sensitive to the number of public
variables. If the series of horizontal blue lines ascends so gradually that there is no clear
number choice, then:

8 Running a Verification

8-26

1 On the toolbar, select Public Entities > Separate functions and variables. The
software displays the number of public variables and functions separately.

2 Select a point just before a big jump in the number of public variables. In this
example, you must click the gray region associated with 2.

 Partition Application Using Batch Command

8-27

Partition Application Using Batch Command

In this section...

“Basic Options” on page 8-27
“Constrain Module Complexity During Partitioning” on page 8-28
“Control Naming of Result Folders” on page 8-29
“Forbid Cycles in Module Dependence Graph” on page 8-30

Basic Options

You can partition an application into modules using the following batch command:
polyspace-modularize [target_folder] {options}

This table describes the basic options that you can use.

Option Description

target_folder Folder that contains the results of the initial run that
processes source files. Default is the folder from which you
run polyspace-modularize.

-o output_folder Output folder for partitioned application. Default is the folder
from which you run polyspace-modularize.

-gui max_n The Polyspace verification environment displays the
Modularizing choices window with a predefined limit for the
maximum number of modules that you can select. Use this
option to specify a new limit max_n.

-matlab max_n If data cache for Modularizing choices window does not exist,
create cache project_name_max_n.m.

Cache enables faster display of Modularizing choices window.

project_name is the value used by -prog option.

max_n is the limit for the maximum number of modules that
you can select.

No action if cache already exists.

8 Running a Verification

8-28

Option Description

-modules n Partition application into n modules. Identical to clicking the
gray region associated with n in the Modularizing choices
window.

-max-complexity

max_c

Partitions application into modules with reference to
specified maximum complexity max_c.

The complexity of a function is a number that is related to
the size of the function. The complexity of a module is the
sum of the complexities of the functions in the module. When
partitioning your application, the software minimizes the use
of cross-module references to functions and variables, subject
to the constraint that the complexity of a module does not
exceed max_c.

If you make max_c sufficiently large, the software generates
only one module, which is identical to the original,
unpartitioned application.

Constrain Module Complexity During Partitioning

Each Polyspace verification produces two "module dependence graph" files in
target_folder/ALL/:

• project_name.mdg — Created early in verification, even for very large applications.
• project_name_IL.mdg — Similar to project_name.mdg, but based on alias

analysis and generated later in verification.

You can partition your application provided an earlier verification has generated the
following files in target_folder:

• ALL/project_name.mdg

• ALL/ SRC/_original.txt

• options

• sources_list.txt

By default, the software uses project_name.mdg when partitioning an application.
However, in some cases, using project_name_IL.mdg might generate more precise
results. To specify project_name_IL.mdg, run the following command:

 Partition Application Using Batch Command

8-29

polyspace-modularize –IL

Note: The -IL option does not support C++.

If you specify the -IL option, then the software computes modules applying the
constraint that the complexity of a function is always 1. In addition, using the options:

• -gui n and -matlab n generates a file named project_name_IL_n.m.
• -max-complexity max_c generates a file named project_name_n_modules-

IL.psprj.

n is the number of modules. The results folder for the ith module is
project_name_n_modules-IL-i.

To force all functions to have a complexity of 1 without specifying the -IL option, run the
following command:
polyspace-modularize -uniform-complexities

Control Naming of Result Folders

You can control the naming of result folders in the ith module using the -stem option:
polyspace-modularize -stem stem_format

stem_format is a string. The # and @ characters in the string are processed as follows:

• # — Replaced by the number of modules in the partitioning.
• @ — Replaced by the argument of -max-complexity.

If you do not specify -stem, then the default string stem_format has the form
project_nameCCkk_modules:

• CC is _IL_ when you use -IL, but _ otherwise.
• kk is @ when you use -max-complexity or # when you use the Polyspace verification

environment.

For example, if you want a specific name, MyName, which overrides the project name and
does not incorporate the module number, then run:
polyspace-modularize -stem MyName

8 Running a Verification

8-30

Forbid Cycles in Module Dependence Graph

By default, the software allows the module dependence graph to have cycles. However, in
some cases, you might get better results with acyclic graphs. Use the following command:
polyspace-modularize -forbid-cycles

9

Troubleshooting Verification Problems

• “View Error Information When Verification Stops” on page 9-3
• “Troubleshoot Compiler and Linking Errors” on page 9-6
• “Obtain System Information for Technical Support” on page 9-7
• “Header File Location Not Specified” on page 9-8
• “Polyspace Cannot Find the Server” on page 9-9
• “Errors From Disk Defragmentation and Antivirus Software” on page 9-10
• “Insufficient Memory During Report Generation” on page 9-11
• “Compilation Error Overview” on page 9-12
• “Running Multiple Polyspace Processes” on page 9-13
• “Troubleshoot Using Preprocessed Files” on page 9-14
• “Check Compilation Before Verification” on page 9-18
• “Syntax Error” on page 9-19
• “Undeclared Identifier” on page 9-20
• “Missing Identifiers with Keil or IAR Dialect” on page 9-21
• “Unknown Prototype” on page 9-22
• “No Such File or Folder” on page 9-23
• “#error Directive” on page 9-24
• “Object is Too Large” on page 9-25
• “Unsupported Non-ANSI Keywords (C)” on page 9-26
• “Initialization of Global Variables (C++)” on page 9-28
• “Double Declarations of Standard Template Library Functions” on page 9-29
• “Large Static Initializer” on page 9-30
• “Compilation Messages” on page 9-31
• “C++ Dialect Issues” on page 9-32
• “C Link Errors” on page 9-40

9 Troubleshooting Verification Problems

9-2

• “C++ Link Errors” on page 9-46
• “Standard Library Function Stubbing Errors” on page 9-49
• “Automatic Stubbing Errors” on page 9-55
• “Reduce Verification Time” on page 9-57
• “Storage of Temporary Files” on page 9-73

 View Error Information When Verification Stops

9-3

View Error Information When Verification Stops

If verification stops, you can view error information in the Project Manager interface or
in the log file.

In this section...

“View Error Information in Project Manager” on page 9-3
“View Error Information in Log File” on page 9-3

View Error Information in Project Manager

1 View the errors on the Output Summary tab.
2 If you have the Compilation Assistant on, to fix the error, you can perform certain

actions on the Output Summary tab.

The following figure shows an error due to a missing include file turbo.h. You can
add the missing file through the Output Summary tab.

3 To open the source code at the line containing the error, double-click the message.
4 For more information, right-click the message. From the context menu, select Open

Preprocessed File.

The .ci file opens. The Polyspace software uses this file to compile the source file.
The file contents can help you understand the compilation error.

5 To search the log, enter search terms in the Search box.

View Error Information in Log File

You can view errors directly in the log file. The log file is in Results_folder.

1 To open the Results folder in your file browser, right-click the result folder name
on the Project Browser pane. From the context menu, select Open Folder with
Files Manager.

9 Troubleshooting Verification Problems

9-4

2 To view the errors, scroll through the verification log file, starting at the end and
working back.

The following example shows sample log file information. The error has occurred
because the C++ option -class-analyzer arg was used, but the verification
cannot find arg in the source code.

--

User Program Error: Argument of option -class-analyzer not found.

| Class or typedef MyClass does not exist.

|Please correct the program and restart the verifier.

--

 View Error Information When Verification Stops

9-5

--- ---

--- Verifier has encountered an internal error. ---

--- Please contact your technical support. ---

--- ---

Failure at: Sep 24, 2009 17:16:26

User time for polyspace-code-prover-nodesktop: 25.6real, 25.6u + 0s

 (0gc)

Error: Exiting because of previous error

*** End of Polyspace Verifier analysis

9 Troubleshooting Verification Problems

9-6

Troubleshoot Compiler and Linking Errors

When you obtain an error message related to compilation or linking, try:

• Checking whether the error message is related to the dialect that you specified. To
specify a different dialect:

• In the user interface, choose a dialect on the Configuration pane. In the
Configuration tree view, select Target & Compiler. From the Dialect drop-
down list, select an option.

• At the command line, use the -dialect option.

For more information, see “Dialect (C)”.
• Checking whether the error message is related to stubbing of standard library

functions. To avoid this stubbing by Polyspace implementations:

• For C: Use option -D POLYSPACE_NO_STANDARD_STUBS or -D
POLYSPACE_STRICT_ANSI_STANDARD_STUBS.

• For C++: Use option -no-stl-stubs.

For more information, see “Prepare Code for Built-In Functions”.
• Checking the preprocessed files with extension .ci to view:

• Expanded headers.
• Expanded macros.
• Active branch of #ifdef conditional statement.

For more information, see “Troubleshoot Using Preprocessed Files”.

 Obtain System Information for Technical Support

9-7

Obtain System Information for Technical Support

When you enter a support request, you must provide your system information.

In this section...

“Information Required” on page 9-7
“How to Obtain Required Information” on page 9-7

Information Required

• Hardware configuration
• Operating system
• Polyspace and MATLAB licenses
• Specific version numbers for Polyspace products
• Installed Bug Report patches

How to Obtain Required Information

To obtain your configuration information, either:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command:

• UNIX — MATLAB_Install/polyspace/bin/polyspace-code-prover-
nodesktop -ver

• DOS — MATLAB_Install\polyspace\bin\polyspace-code-prover-
nodesktop -ver

9 Troubleshooting Verification Problems

9-8

Header File Location Not Specified

Message

include.h: No such file or folder

Possible Cause

• You did not specify include folders.
• You specified include folders, but a header file is missing from the specified folders.

Solution

Do one of the following:

• Add the missing header file to the specified include folder.
• Specify another include folder that contains the missing file.

For more information, see “Add Source Files and Include Folders”.

 Polyspace Cannot Find the Server

9-9

Polyspace Cannot Find the Server

Message

Error: Cannot instantiate Polyspace cluster

| Check the -scheduler option validity or your default cluster profile

| Could not contact an MJS lookup service using the host computer_name.

 The hostname, computer_name, could not be resolved.

Possible Cause

Polyspace uses information provided in Preferences to locate the server. If this
information is incorrect, the software cannot locate the server.

Solution

Provide correct server information.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Provide your server information.

For more information, see “Set Up Remote Verification and Analysis”.

9 Troubleshooting Verification Problems

9-10

Errors From Disk Defragmentation and Antivirus Software

Message
Some stats on aliases use:

 Number of alias writes: 22968

 Number of must-alias writes: 3090

 Number of alias reads: 0

 Number of invisibles: 949

Stats about alias writes:

 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)

 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),

 foo3 (1288)

**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)

exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.

unhandled exception: SysErr: No such file or directory [noent]

--

--- ---

--- Verifier has encountered an internal error. ---

--- Please contact your technical support. ---

--- ---

Possible Cause

A disk defragmentation tool or antivirus software is running on your machine.

Solution

Try:

• Stopping the disk defragmentation tool.
• Deactivating the antivirus software. Or, configuring exception rules for the antivirus

software to allow Polyspace to run without a failure.

Note: Even if the verification does not fail, the antivirus software can reduce the speed
of your verification. This reduction occurs because the software checks the temporary
verification files. Configure the antivirus software to exclude your temporary folder, for
example, C:\Temp, from the checking process.

 Insufficient Memory During Report Generation

9-11

Insufficient Memory During Report Generation

Message
....

Exporting views...

Initializing...

Polyspace Report Generator

Generating Report

 Converting report

Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512

Document conversion failed

.....

Java exception occurred:

java.lang.OutOfMemoryError: Java heap space

Possible Cause

During generation of very large reports, the software can sometimes indicate that there
is insufficient memory.

Solution

If this error occurs, try increasing the Java® heap size. The default heap size in a 64-bit
architecture is 1024 MB.

To increase the size:

1 Navigate to MATLAB_Install\polyspace\bin\architecture. Here:

• MATLAB_Install is the installation folder, for instance, C:\Program Files
\MATLAB\R2014a.

• architecture is your computer architecture, for instance, win32, win64, etc.
2 Change the default heap size that is specified in the file, java.opts. For example,

to increase the heap size to 2 GB, replace 1024m with 2048m.
3 If you do not have write permission for the file, copy the file to another location. After

you have made your changes, copy the file back to MATLAB_Install\polyspace
\bin\architecture\.

9 Troubleshooting Verification Problems

9-12

Compilation Error Overview

You can use Polyspace software instead of your compiler to make syntactical, semantic,
and other static checks. The Polyspace compiler follows the ANSI C90 standard.

Polyspace detects compilation errors during the standard compliance checking stage,
which takes place before the verification stage. The compliance checking stage takes
about the same amount of time to run as a compiler. Using Polyspace software early in
development yields a number of benefits:

• Detection of link errors
• Detection of errors that only appear with two or more files
• Detection of compiler directives that you need to explicitly declare
• Objective, automatic, and early control of development work (possibly to check code

into a configuration management system)

 Running Multiple Polyspace Processes

9-13

Running Multiple Polyspace Processes

Polyspace Code Prover can be opened simultaneously with Polyspace Bug Finder.
However, only one code analysis can be run at a time.

If you try to run multiple Polyspace processes, you will get a License Error –4,0. To
avoid this error, close any additional Polyspace windows before running an analysis.

9 Troubleshooting Verification Problems

9-14

Troubleshoot Using Preprocessed Files

In this section...

“Preprocessed Files” on page 9-14
“Troubleshoot Using Preprocessed Files” on page 9-14
“Examples” on page 9-14

Preprocessed Files

Content: The Polyspace software, like other compilers, converts source code to
preprocessed code. The preprocessed files have a .ci extension. The preprocessed file
expands preprocessor directives, including:

• Header files in #include statements.
• Macros defined with #define statements.
• Conditional compilations defined with #if, #ifdef or #ifndef statements.

Stage Location of .ci files

Before compilation Results_folder/ALL/SRC/

After compilation In a zipped file, ci.zip, in Results_folder/ALL/SRC/MACROS/

Troubleshoot Using Preprocessed Files

To quickly find errors, view the preprocessed code when:

1 Your source code includes several header files. Check the preprocessed *.ci file to
see the header files expanded in one code.

2 Your source code contains conditional compilations using #if, #ifdef or #ifndef
statements. Check the preprocessed files to find which branch of the conditional
statements are active.

Examples

This example shows how to use preprocessed files for troubleshooting.

 View Expanded Headers and Macros

9-15

View Expanded Headers and Macros

The following example uses a source file Extension.cpp that:

• Includes a header file Extension.h.
• Uses an object-like macro MAX_VALUE and a function-like macro ABS(x).
• Uses a conditional compilation statement with the flag _DEBUG.

The resulting preprocessed file Extension.ci:

• Expands the header file Extension.h.
• Replaces the macros MAX_VALUE and ABS(x) with their contents.
• Replaces the conditional compilation statement based on whether you used the

compile flag _DEBUG.

Extension.cpp Extension.h Partial content of Extension.ci,
using compile flag _DEBUG

#include "Extension.h"

Extension::Extension(int val)

{

 num = 0;

 ABS(val);

 if (val > MAX_VALUE)

 num = -1;

 }

#ifdef _DEBUG

 void Extension::message(char*) {}

#else

 void print(char*) {}

#endif

#define MAX_VALUE 10

#define ABS(x) ((x)>0?(x):-(x))

class Extension

 {

 public:

 int num;

 Extension(int val);

 #ifdef _DEBUG

 void message(char*);

 #else

 void print(char*);

 #endif

 };

1 "H:\\Polyspace\\Sources

 \\PreProcessor\\Extension.cpp" 2

1 "H:\\Polyspace\\Sources

 \\PreProcessor\\Extension.h" 1

class Extension

 {

 public:

 int num;

 Extension(int val);

 void message(char*);

 };

2 "H:\\Polyspace\\Sources

 \\PreProcessor\\Extension.cpp" 2

Extension::Extension(int val)

{

 num = 0;

 ((val)>0?(val): -(val));

 if (val > 10)

 num = -1;

 }

 void Extension::message(char*) {}

Investigate Linking Error

The following example uses two source files, Child1.cpp and Child2.cpp, that include
a header file Test.h. Running verification on the two files together causes a linking
error because:

9 Troubleshooting Verification Problems

9-16

• The header file defines a class Test that uses a conditional compilation with a
#ifdef statement. The #ifdef statement uses a variable DEBUG.

• DEBUG is defined in child1.cpp but not in child2.cpp. This mismatch causes two
conflicting definitions of the class Test.

Child1.cpp Child2.cpp Test.h

#define DEBUG

#include "Test.h"

class Child1 : public Test

{

public:

 Child1();

 Child1(int val);

 void search(int val);

};

#undef DEBUG

#include "Test.h"

class Child2 : public Test

{

public:

 Child2();

 Child2(int val);

 void qshort(int val);

protected:

 int m_status;

};

class Test

{

public:

 Test();

 Test(int val);

 int getVal();

 void setVal(int val);

#ifdef DEBUG

 void algorithm(int val,

int max);

#endif

private:

 int m_val;

};

Error message: For the following error message, the source files are located in H:
\Polyspace\Sources\PreProcessor\.

File H:\Polyspace\Sources\PreProcessor\Test.h line 1

Error: declaration of function "Test::Test(const Test &)" does not match ...

 function "Test::algorithm" during compilation of ...

 "H:\Polyspace\Sources\PreProcessor\Child2.cpp"

 (one may have been removed due to #define)

Preprocessed Files: To find the conflicting definitions of the class Test, compare the two
.ci files. Class Test in Child1.ci contains a method algorithm;Child2.ci does not.

Child1.ci Child2.ci
....

1 "../sources/Test.cpp" 2

1 "../sources/test.h" 1

class Test

{

public:

 Test();

....

1 "../sources/Child2.cpp" 2

1 "../sources/Child2.h" 1

1 "../sources/test.h" 1

class Test

{

public:

 Investigate Linking Error

9-17

Child1.ci Child2.ci
 Test(int val);

 int getVal();

 void setVal(int val);

 void algorithm(int val, int max);

private:

 int m_val;

};

2 "../sources/Test.cpp" 2

....

 Test();

 Test(int val);

 int getVal();

 void setVal(int val);

private:

 int m_val;

};

2 "../sources/Child2.h" 2

....

9 Troubleshooting Verification Problems

9-18

Check Compilation Before Verification

Before running a verification, you can enable the Compilation Assistant. If the
Compilation Assistant detects compilation errors, the software stops the verification. In
the Project Manager perspective, on the Output Summary tab, the software displays
errors and suggests possible solutions.

For more information, see “Check for Compilation Problems”.

 Syntax Error

9-19

Syntax Error

Message

Verifying compilation.c

compilation.c:3: syntax error; found `x' expecting `;'

Code Used

void main(void)

{

int far x;

x = 0;

x++;

}

Solution

The far keyword is unknown in ANSI C. This causes confusion at compilation time.
Should far be a variable or a qualifier? The int far x; construction is illegal.

Possible corrections include:

• Remove far from the source code.
• Define far as a qualifier, such as const or volatile.
• Remove far artificially by specifying a compilation flag such as -D far= (with a

space after the equal sign).

Note: To specify -D compilation flags that are generic to the project, for efficiency, use
the -include option. Refer to “Gather Compilation Options Efficiently”.

9 Troubleshooting Verification Problems

9-20

Undeclared Identifier

Message

Verifying compilation.c

compilation.c:3: undeclared identifier `x'

Code Used

void main(void)

{

x = 0;

x++;

}

Solution

The type is unknown, and therefore the compilation stops. Should x be a float, an int,
or a char?

Some cross compilers define variables implicitly. Your code must declare variables
verification. Polyspace software has no knowledge about implicit variables.

Similarly, some compilers interpret __SP as a reference to the stack pointer. Use the -D
compilation flag.

Note: To specify -D compilation flags that are generic to the project, for efficiency, use
the -include option. Refer to “Gather Compilation Options Efficiently”.

 Missing Identifiers with Keil or IAR Dialect

9-21

Missing Identifiers with Keil or IAR Dialect

Message

expected an identifier

Possible Cause

If you select Keil or IAR as your dialect, the software removes certain keywords during
preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs. For a list of keywords that are removed, see “Verify Keil or IAR
Dialects”.

In general, if you receive the above error message despite an identifier being present in
your source code, check the preprocessed file to see if the identifier is removed during
preprocessing. For more information, see “Troubleshoot Using Preprocessed Files”.

Solution

To avoid removal of keywords and the compilation error, do one of the following:

• In the user interface, enter __PST_KEIL_NO_KEYWORDS__ or
__PST_IAR_NO_KEYWORDS__ for Preprocessor definitions.

• At the command line, use the flag -D __PST_KEIL_NO_KEYWORDS__ or -D
__PST_IAR_NO_KEYWORDS__.

9 Troubleshooting Verification Problems

9-22

Unknown Prototype

Message

Error: function 'myfunc' has unknown prototype

Code Used

var = myfunc(s32var1, ptr->s32var2, 24);

var, s32var are signed long data types.

Solution

1 In an include file, for example, myinclude.h, specify the complete prototype for the
function:

#ifndef _INC_H

#define _INC_H

extern signed long myfunc(signed long, signed long, signed long);

#endif

2 Rerun your verification with the option -include myinclude.h.

 No Such File or Folder

9-23

No Such File or Folder

Messages

Here are examples of messages that include No such file or folder and
catastrophic error: could not open source file:

compilation.c:1: one_file.h: No such file or folder

compilation.c:1: catastrophic error: could not open source file

"one_file.h" (where one_file.h is an include file)

Code Used

#include "one_file.h"

Solution

The one_file.h file is missing.

These files are essential for Polyspace software to complete the compilation, for

• Data coherency
• Automatic stubbing

The Polyspace software must be able to find the include folder that contains this file.
Specify the include folder In the Project Manager perspective, or use the -I option at the
command line, as described in the“-I” reference page.

9 Troubleshooting Verification Problems

9-24

#error Directive

The Polyspace software can terminate during compilation with an unsupported platform
#error. This error means that the software does not recognize the header data types due
to missing compilation flags.

Message

#error directive: !Unsupported platform; stopping!

Code Used

#if defined(__BORLANDC__) || defined(__VISUALC32__)

define MYINT int // then use the int type

#elif defined(__GNUC__) // GCC doesn't support myint

define MYINT long // but uses 'long' instead

#else

error !Unsupported platform; stopping!

#endif

Solution

In the Polyspace software, compilation directives must be explicit. In this example,
the compilation stops because you did not specify the __BORLANDC__, or the
__VISUALC32__, or the __GNUC__ compilation flags. To fix this error, on the
Configuration pane, select Macros. For Preprocessor definitions, specify one of
those three compilation flags and restart the verification.

 Object is Too Large

9-25

Object is Too Large

A verification can terminate during compilation with a message saying that an object is
too large. This error means that the software has detected an object such as an array,
union, struct, or class, that is too big for the pointer size of the selected target.

Messages

• error: array is too large

• error: struct or union is too large

• error: class is too large for pointer type of %d-bits

Code Used

struct S

{

 char tab[32728];

}s;

When using a 16-bit target (for example: -target mcpu)

Solution

Use a larger pointer size.

To select a larger pointer:

• If you are using -target mcpu, specify -pointer-is-32bits.
• If you are using a specific target, specify -pointer-is-xxbits if available,

otherwise use a larger target.

9 Troubleshooting Verification Problems

9-26

Unsupported Non-ANSI Keywords (C)

Code that includes non-ANSI keywords (such as @interrupt) that Polyspace software
does not support generate compilation errors. For example, keywords containing @ as
a first character cause a compilation error. But in this case, you cannot address the
problem by using a compilation flag, nor with a file associated with the -include option.

To address this problem, use the -post-preprocessing-command option.

When you use the -post-preprocessing-command option, write a script or command
to replace the unsupported, non-ANSI keyword with a supported keyword. The command
must process the standard output from preprocessing and produce its results in
accordance with standard output.

The specified script file or command runs just after the preprocessing phase on each
source file. The script executes on each preprocessed c file.

Note: Preprocessed files have the extension .ci. Preprocessed files are contained in a
single compressed file named ci.zip. This file is in the results folder in one of the
following locations:

• <results>/ALL/SRC/MACROS/ci.zip

• <results>/C-ALL/ci.zip.

Caution Always preserve the number of lines in a preprocessed .ci file. Adding or
removing a line, can result in unpredictable behavior, including changes to the location of
checks and MACROS in the Run-Time checks perspective.

Here is an example of such a script file. Save the script in a file named myscript.pl.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF

while ($line = <STDIN>)

{

Replace keyword “titi” with “toto”

$line =~ s/titi/toto/g;

 Unsupported Non-ANSI Keywords (C)

9-27

Remove “@interrupt” (replace with nothing)

$line =~ s/@interrupt/ /g;

DONT DELTE: Print the current processed line to STDOUT

 print $line;

}

To run the script on each preprocessed c file, use this command:
-post-preprocessing-command MATLAB_Install\sys\perl\win32\bin\perl.exe

<absolute path to myscript.pl>\myscript.pl

9 Troubleshooting Verification Problems

9-28

Initialization of Global Variables (C++)

When a data member of a class is declared static in the class definition, it is a static
member of the class. Static data members are initialized and destroyed outside the class,
as they exist even when no instance of the class has been created.

class Test

{

public:

 static int m_number = 0;

};

Error message:
Verifying test_ko.cpp

/sources/test_ko.cpp, line 4: error: a member with an in-class

initializer must be const

| static int m_number = 0;

| ^

1 error detected in the compilation of "test_ko.cpp".

Corrected code:

in file Test.h in file Test.cpp

class Test

{

public:

static int m_number;

};

int Test::m_number = 0;

Note: Some dialects, other than those supported by Polyspace Code Prover, accept the
default initialization of static data member during the declaration.

 Double Declarations of Standard Template Library Functions

9-29

Double Declarations of Standard Template Library Functions

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}

void f(const std::list<int*>::iterator it) {}

void g(const std::list<int*>::const_reverse_iterator it) {}

void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined

error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, use the following Polyspace preprocessing
directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run the verification with the directive for the list
container:

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

9 Troubleshooting Verification Problems

9-30

Large Static Initializer

If you see a large initializer warning during the compilation phase, for example,
lsi_eg.c, line 86: warning: initializer is too large, this may cause scaling troubles.

Please refer to the "Troubleshooting" section of the User Guide

| const unsigned char CJK_S_MKT_CTS_BE_HDB[] = {

| ^

the compilation might:

• Fail with an error if no memory space is available:

• Windows — Error: A segmentation fault occurred in "edgcpfe.x86-
mingw32.exe"

• Linux — Error: The process "edgcpfe.x86-linux" received the
signal 11

• Take a long time to complete.

To avoid this issue, rerun your verification with the following option:
-cfe-extra-flags --truncate_huge_initializer

This option is valid:

• For a C verification only.
• Only if no variable or function address is referenced within the initializer

 Compilation Messages

9-31

Compilation Messages

Phrase Found in Message See

syntax error “Syntax Error” on page 9-19
undeclared identifier “Undeclared Identifier” on page 9-20
unknown prototype “Unknown Prototype” on page 9-22
No such file or folder

or

Catastrophic error: could not

open source file

“No Such File or Folder” on page 9-23

#error: directive “#error Directive” on page 9-24

For messages triggered by unsupported keywords, see “Unsupported Non-ANSI
Keywords (C)” on page 9-26.

9 Troubleshooting Verification Problems

9-32

C++ Dialect Issues

In this section...

“ISO versus Default Dialects” on page 9-32
“CFront2 and CFront3 Dialects” on page 9-34
“Visual Dialects” on page 9-35
“GNU Dialect” on page 9-36

ISO versus Default Dialects

The ISO dialect strictly follows the ISO/IEC 14882:1998 ANSI C++ standard. If you
specify the -dialect iso option, the Polyspace compiler might produce permissiveness
errors. The following code contains five common permissiveness errors that occur if you
specify the -dialect iso option. These errors are explained in detail following the
code.

If you do not specify the -dialect option, the Polyspace compiler uses a default dialect
that many C++ compilers use; the default dialect is more permissive with regard to the C
++ standard.

Original code (file permissive.cpp):

1

2 class B {} ;

3 class A

4 {

5 friend B ;

6 enum e ;

7 void f() { long float ff = 0.0 ;}

8 enum e { OK = 0, KO } ;

9 };

10 template <class T>

11 struct traits

12 {

13 typedef T * pointer ;

14 typedef T * pointer ;

15 } ;

16 template<class T>

17 struct C

 C++ Dialect Issues

9-33

18 {

19 typedef traits<T>::pointer pointer ;

20 } ;

21 int main()

22 {

23 C<int> c ;

23 }

• Using -dialect iso, line 5 should be: friend class B:

"./sources/permissive.cpp", line 5: error: omission of "class"

is nonstandard

 friend B ;

• Using -dialect iso, the line 6 must be removed:

"./sources /permissive.cpp", line 6: error: forward declaration

of enum type

is nonstandard

 enum e ;

 ^

• Using -dialect iso, line 7 should be: double ff = 0.0:

"./sources/permissive.cpp", line 7: error: invalid combination

of type

specifiers

 long float ff = 0.0 ;

 ^

• Using -dialect iso, line 14 needs to be removed:

"./sources/permissive.cpp", line 14: error: class member typedef

may not be

redeclared

 typedef T * pointer ; // duplicate !

 ^

• Using -dialect iso, line 21 needs to be changed by: typedef typename
traits<T>::pointer pointer

"./sources/permissive.cpp", line 21: error: nontype

"traits<T>::pointer [with T=T]" is not a type name

 typedef traits<T>::pointer pointer ;

These error messages disappear if you specify the -dialect default option.

9 Troubleshooting Verification Problems

9-34

CFront2 and CFront3 Dialects

The cfront2 and cfront3 dialects were being used before the publication of the ANSI C
++ standard in 1998. Nowadays, these two dialects are used to compile legacy C++ code.

If the cfront2 or cfront3 options are not selected, you may get the common error
messages below.

Variable Scope Issues

The ANSI C++ standard specifies that the scope of the declarations occurring inside loop
definition is local to the loop. However some compilers may assume that the scope is local
to the bloc ({ }) that contains the loop.

Original code:

for (int i = 0; i < maxval; i++) {...}

if (i == maxval) {

 ...

}

Error message:

Verifying Test.cpp

"../sources/Test.cpp", line 26: error: identifier "i" is undefined

 if (i == maxval) {

 ^

Note: This kind of construction has been allowed by compilers until 1999, before the
standard became more strict.

“bool” Issues

Standard type may need to be turned into boolean type.

Original code:

enum bool

 {

 FALSE=0,

 TRUE

 };

 C++ Dialect Issues

9-35

class CBool

{

public:

 CBool ();

 CBool (bool val);

 bool m_val;

};

Error message:

Verifying C++ sources ...

Verifying CBool.cpp

"../sources/CBool.h", line 4: error: expected either a definition

or a tag name

 enum bool

 ^

Visual Dialects

The following messages appears if the compiler is based on a Visual® dialect (including
visual8).

Import Folder

When a Visual application uses #import directives, the Visual C++ compiler generates a
header file that contains some definitions. These header files have a .tlh extension, and
Polyspace for C/C++ requires the folder containing those files.

Original code:

#include "stdafx.h"

#include <comdef.h>

#import <MsXml.tlb>

MSXML::_xml_error e ;

MSXML::DOMDocument* doc ;

int _tmain(int argc, _TCHAR* argv[])

{

 return 0;

}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not

open source file "./MsXml.tlh"

9 Troubleshooting Verification Problems

9-36

 #import <MsXml.tlb>

 ^

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). Therefore, in order to provide those files, the application needs to be built first.
Then, the option -import-dir=<build folder> must be set with the path folder.

pragma Pack

Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

Original code:

test1.cpp type.h test2.cpp

#pragma pack(4)

#include "type.h"

struct A

{

 char c ;

 int i ;

} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...

"../sources/type.h", line 2: error: declaration of class "A" had

a different meaning during compilation of "CPP-ALL/SRC/MACROS/test1.cpp"

(class types do not match)

 struct A

 ^

 detected during compilation of secondary translation unit

"CPP-ALL/SRC/MACROS/test2.cpp"

The option -ignore-pragma-pack is mandatory to continue the verification.

GNU Dialect

For the GNU dialect, you can select the GCC 3.4 or GCC 4.6 version. If you use this
dialect, Polyspace does not produce an error during the Compile phase because
of assembly language keywords such as __asm__ __volatile__. However, for
verification, Polyspace ignores the content of the assembly-language code.

Polyspace software supports the following GNU elements:

• Variable length arrays

 C++ Dialect Issues

9-37

• Anonymous structures:

void f(int n) { char tmp[n] ; /* ... */ }

union A {

 struct {

 double x ;

 double y ;

 double z ;

 };

 double tab[3];

} a ;

void main(void) {

 assert(&(a.tab[0]) == &(a.x)) ;

}

• Other syntactic constructions allowed by GCC, except as noted below

Partial Support

Zero-length arrays have the same support as in Visual Mode. They are allowed when
used through a pointer, but not in a local variable.

Syntactic Support Only

Polyspace software provides syntactic support for the following options, but not semantic
support:

• __attribute__(...) is allowed, but generally not taken into account.
• No special stubs are computed for predeclared functions such as __builtin_cos,

__builin_exit, and __builtin_fprintf).

Not Supported

The following options are not supported:

• The keyword __thread
• Statement expressions:

int i = ({ int tmp ; tmp = f() ; if (tmp > 0) { tmp = 0 ; } tmp ; })

9 Troubleshooting Verification Problems

9-38

• Taking the address of a label:

{ L : void *a = &&L ; goto *a ; }

• General C99 features supported by default in GCC, such as complex built-in types
(__complex__, __real__, etc.).

• Extended designators initialization:

struct X { double a; int b[10] } x = { .b = { 1, [5] =2 },

.b[3] = 1, .a = 42.0 };

• Nested functions

Examples

Example 1: _asm_volatile_ keyword

In the following example, for the inb_p function to manage the return of the local
variable _v, the __asm__ __volatile__ keyword is used as follows:

extern inline unsigned char

inb_p (unsigned short port)

{

 unsigned char _v;

 __asm__ __volatile__ ("inb %w1,%0\noutb %%al,$0x80":"=a"

 (_v):"Nd" (port));

 return _v;

}

...

Although Polyspace does not produce an error during the Compile phase, it ignores the
assembly code. An orange Non-initialized local variable error appears on the return
statement after verification. For more information, see “Local Variables in Functions
with Assembly Code”.

Example 2: Anonymous Structure

The following example shows an unnamed structure supported by GNU:

class x

{

public:

 struct {

 C++ Dialect Issues

9-39

 unsigned int a;

 unsigned int b;

 unsigned int c;

 };

 unsigned short pcia;

 enum{

 ea = 0x1,

 eb = 0x2,

 ec = 0x3

 };

 struct {

 unsigned int z1;

 unsigned int z2;

 unsigned int z3;

 unsigned int z4;

 };

};

int main(int argc, char *argv[])

{

 class x myx;

 myx.a = 10;

 myx.z1 = 11;

 return(0);

}

9 Troubleshooting Verification Problems

9-40

C Link Errors

In this section...

“Link Error Overview (C)” on page 9-40
“Function: Procedure Multiply Defined” on page 9-41
“Function: Wrong Argument Type” on page 9-41
“Function: Wrong Argument Number” on page 9-41
“Function: Wrong Return Type” on page 9-42
“Variable: Wrong Type” on page 9-42
“Variable: Signed/Unsigned” on page 9-43
“Variable: Different Qualifier” on page 9-43
“Variable: Array Against Variable” on page 9-43
“Variable: Wrong Array Size” on page 9-44
“Missing Required Prototype for varargs” on page 9-44

Link Error Overview (C)

This section describes how to address some common types of link errors for C code.

Link errors result from the checking that Polyspace performs for compliance with ANSI
C standards. Link error messages can apply to functions, variables, and varargs.

The error message includes specific information that reflects the code that the Polyspace
software is checking, such as the function name and type declaration.

Examining Preprocessed Code

Looking at the preprocessed code can help you to find link errors faster.

Preprocessed files have the extension .ci. Preprocessed files are contained in a single
compressed file named ci.zip. This file is in the results folder in one of the following
locations:

• <results>/ALL/SRC/MACROS/ci.zip

• <results>/C-ALL/ci.zip.

 C Link Errors

9-41

Function: Procedure Multiply Defined

Files Used

header.h file1.c file2.c

#include <stdio.h>

void func() {

 }

#include "header.h" #include "header.h"

Polyspace Output

Error:

procedure func multiply defined

Solution

For C code, to allow such multiple inclusion of the header containing the function body,
use the option -static-headers-object.

Function: Wrong Argument Type

Polyspace Output

Error:

global declaration of 'f' function has incompatible type with its definition

Declared function type has 'arg 1' type incompatible with definition.

int f(float y) int f(int *y);

{

 int r; void main(void)

 r=12; {

} int r;

 r = f(&r);

 }

Solution

The first parameter for the f function is either a float or a pointer to an integer. The
global declaration must match the definition.

Function: Wrong Argument Number

Polyspace Output

Error:

9 Troubleshooting Verification Problems

9-42

global declaration of 'f' function has incompatible type with its definition

Declared function type has incompatible number of arguments with definition.

int f(float y) int f(float y, float x);

{

 int r; void main(void)

 r=12; {

} int a;

 float b, c;

 a = f(b, c);

 }

Solution

These two functions have a different number of arguments. This mismatch in the number
of arguments results in a nondeterministic execution.

Function: Wrong Return Type

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition

declared function type has incompatible return type with definition

declared 'float' (size 64) type incompatible with defined 'int' (size 32) type

float f(int y) int f(int y);

{

float r; void main(void)

r=1.0; {

return r; int r;

} r = f(r);

 }

Solution

Use the same return type for the declaration and definition of function f.

Variable: Wrong Type

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

 declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x int x;

 void main(void)

 {}

 C Link Errors

9-43

Solution

Declare the x variable the same way in every file. If a variable x is as an integer equal to
1, which is 0x0001, what does this value mean when seen as a float? It could result in a
NaN (Not a Number) during execution.

Variable: Signed/Unsigned

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'x' variable has incompatible type with its definition

 declared 'unsigned' type incompatible with defined 'signed' type

extern unsigned char x; char x;

 void main(void)

 {}

Solution

Consider the 8-bit binary value 10000010. Given that a char is 8 bits, it is not clear
whether it is 130 (unsigned), or maybe -126 (signed).

Variable: Different Qualifier

Polyspace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition

 declared 'non qualified' type incompatible with defined 'volatile' type

 'volatile' qualifier used

extern int x; volatile int x;

 void main(void)

 {}

Solution

Polyspace software flags the volatile qualifier, because that qualifier has major
implications for the verification. Because it is not clear which statement is correct, the
verification process generates a warning.

Variable: Array Against Variable

Polyspace Output

Verifying cross-files ANSI C compliance ...

9 Troubleshooting Verification Problems

9-44

Error: global declaration of 'x' variable has incompatible type with its definition

 declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

 void main(void)

 {

 }

Solution

The real allocated size for the x variable is one integer. Any function attempting to
manipulate x[] corrupts memory.

Variable: Wrong Array Size

Polyspace Output

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition

 declared array type has 'upper bound' 5 inferior to definition 'upper bound' 12

extern int x[12]; int x[5];

 void main(void)

 {

 }

Solution

The real allocated size for the x variable is five integers. Any function attempting to
manipulate x[] between x[5] and x[11] corrupts memory.

Missing Required Prototype for varargs

Polyspace Output

Verifying cross-files ANSI C compliance ...

Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...); void main(void)

 {

void f(void) g(4);

{ }

g(12,“abcde“,40)

}

 C Link Errors

9-45

Solution

Declare the prototype for g when main executes.

To eliminate this error, you can add the following line to main:

void g(int, ...)

Or, you can avoid modifying main by adding that same line in a new file and then when
you launch the verification, use the “-include” option:

–include c:\Polyspace\new_file.h

where new_file.h is the new file that includes the line void g(int, ...).

9 Troubleshooting Verification Problems

9-46

C++ Link Errors

In this section...

“STL Library C++ Stubbing Errors” on page 9-46
“Lib C Stubbing Errors” on page 9-47

STL Library C++ Stubbing Errors

Polyspace software provides an efficient implementation of all functions in the Standard
Template Library (STL). The STL and platforms may have different declarations and
definitions; otherwise, the following error messages appear:

Original code:

#include <map>

struct A

{

 int m_val;

};

struct B

{

 int m_val;

 B& operator=(B &) ;

};

typedef std::map<A, B> MAP ;

int main()

{

 MAP m ;

 A a ;

 B b ;

 m.insert(std::make_pair(a,b)) ;

}

Error message:
Verifying template.cpp

"<Product>/Verifier/cinclude/new_stl/map", line 205: error: no operator

 C++ Link Errors

9-47

"=" matches these operands

 operand types are: pair<A, B> = const map<A, B, less<A>>::value_type

 { volatile int random_alias = 0 ; if (random_alias) *((pair<Key, T> *)

_pst_elements) = x ; } ; // read of x is done here

 detected during instantiation of

"pair<__pst__generic_iterator<bidirectional_iterator_tag, pair<const Key,

T>>, bool> map<Key, T, Compare>::insert(const map<Key, T, Compare>::

value_type &) [with Key=A, T=B, Compare=less<A>]" at line 23 of "/cygdrive/

c/_BDS/Test-Polyspace/sources/template.cpp"

Using the -no-stub-stl option avoids this error message. Then, you need to add the
folder containing definitions of own STL library as a folder to include using the option -I.

The preceding message can also appear with the folder names:

"<Product>/cinclude/new_stl/map", line 205: error: no operator "="

matches these operands

"<Product>/cinclude/pst_stl/vector", line 64: error: more than one

operator "=" matches these operands:

Be careful that other compile or linking troubles can appear with your own template
definitions.

Lib C Stubbing Errors

Extern C Functions

Some functions may be declared inside an extern “C” { } bloc in some files, but not
in others. In this case, the linkage is different which causes a link error, because it is
forbidden by the ANSI standard.

Original code:

extern "C" {

 void* memcpy(void*, void*, int);

}

class Copy

{

public:

 Copy() {};

 static void* make(char*, char*, int);

};

void* Copy::make(char* dest, char* src, int size)

{

9 Troubleshooting Verification Problems

9-48

 return memcpy(dest, src, size);

}

Error message:
Pre-linking C++ sources ...

<results_dir>/test.cpp, line 2: error: declaration of function "memcpy"

is incompatible with a declaration in another translation unit

(parameters do not match)

| the other declaration is at line 4096 of "__polyspace__stdstubs.c"

| void* memcpy(void*, void*, int);

| ^

| detected during compilation of secondary translation unit "test.cpp"

The function memcpy is declared as an external "C" function and as a C++ function. It
causes a link problem. Indeed, function management behavior differs whether it relates
to a C or a C++ function.

When such error happens, the solution is to homogenize declarations, i.e. add extern
"C" { } around previous listed C functions.

Another solution consists in using the permissive option -no-extern-C. It removes all
extern "C" declarations.

Functional Limitations on Some Stubbed Standard ANSI Functions

• signal.h is stubbed with functional limitations: signal and raise functions do not
follow the associated functional model. Even if the function raise is called, the stored
function pointer associated to the signal number is not called.

• No jump is performed even if the setjmp and longjmp functions are called.
• errno.h is partially stubbed. Some math functions do not set errno, but instead,

generate a red error when a range or domain error occurs with ASRT checks.

You can also use the compile option POLYSPACE_STRICT_ANSI_STANDARD_STUBS (-
D flag). This option only deactivates extensions to ANSI C standard libC, including the
functions bzero, bcopy, bcmp, chdir, chown, close, fchown, fork, fsync, getlogin,
getuid, geteuid, getgid, lchown, link, pipe, read, pread, resolvepath, setuid,
setegid, seteuid, setgid, sleep, sync, symlink, ttyname, unlink, vfork, write,
pwrite, open, creat, sigsetjmp, __sigsetjmp, and siglongjmpare.

 Standard Library Function Stubbing Errors

9-49

Standard Library Function Stubbing Errors

In this section...

“Conflicts Between Library Functions and Polyspace Stubs” on page 9-49
“_polyspace_stdstubs.c Compilation Errors” on page 9-49
“Troubleshooting Approaches for Standard Library Function Stubs” on page 9-50
“Restart with the -I option” on page 9-51
“Replace Automatic Stubbing with Include Files” on page 9-51
“Create _polyspace_stdstubs.c File with Required Includes” on page 9-52
“Provide .c file Containing Prototype Function” on page 9-53
“Ignore _polyspace_stdstubs.c” on page 9-54

Conflicts Between Library Functions and Polyspace Stubs

A code set compiles successfully for a target, but during the __polyspace_stdstubs.c
compilation phase for the same code, Polyspace software generates an error message.

The error message highlights conflicts between:

• A standard library function that the application includes
• One of the standard stubs that Polyspace software uses in place of the function

For more information about errors generated during automatic stub creation, see
“Automatic Stubbing Errors” on page 9-55.

_polyspace_stdstubs.c Compilation Errors

Here are examples of the errors relating to stubbing standard library functions. The
code uses standard library functions such as sprintf and strcpy, illustrating possible
problems with these functions.

Example 1

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file or

folder

Verifying C-STUBS/__polyspace__stdstubs.c

9 Troubleshooting Verification Problems

9-50

C-STUBS/__polyspace__stdstubs.c:1118: syntax error; found `strlen'

expecting `;'

C-STUBS/__polyspace__stdstubs.c:1120: syntax error; found `i'

expecting `;'

C-STUBS/__polyspace__stdstubs.c:1120: undeclared identifier `i'

Example 2

Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure 'sprintf'.

Example 3

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace__stdstubs.c:3027: syntax error; found `n'

expecting `)'

C-STUBS/__polyspace__stdstubs.c:3027: skipping `n'

C-STUBS/__polyspace__stdstubs.c:3037: undeclared identifier `n'”

Troubleshooting Approaches for Standard Library Function Stubs

You can use a range of techniques to address errors relating to stubbing standard library
functions. These techniques reflect different balances for the verification between:

• Precision
• Amount of time preparing the code
• Execution time

Try the techniques in any order. Consider trying the simplest approaches first, and
trying other techniques as required to achieve the balance of the trade-offs that you seek.
Here are the techniques, listed in order of estimated simplicity, from simplest to most
thorough:

• “Restart with the -I option” on page 9-51

 Standard Library Function Stubbing Errors

9-51

• “Replace Automatic Stubbing with Include Files” on page 9-51
• “Create _polyspace_stdstubs.c File with Required Includes” on page 9-52

(Use when precision is important enough to justify extensive code preparation time)
• “Provide .c file Containing Prototype Function” on page 9-53

(Use when you do not want to invest much time for code preparation time)
• “Ignore _polyspace_stdstubs.c” on page 9-54

If the problem persists after trying these solutions, contact MathWorks support.

Restart with the -I option

Generally you can best address stubbing errors by restarting the verification. Include
the header file containing the prototype and the required definitions, as used during
compilation for the target.

The least invasive way of including the header file containing the prototype is to use the
-I option.

Replace Automatic Stubbing with Include Files

The Polyspace software provides a selection of files that contain stubs for most standard
library functions. You can use those stubs in place of automatic stubbing.

For replacement of stubbing to work effectively, provide the include file for the function.
 In the following example, the standard library function is strlen. This example
assumes that you have included string.h. Because the string.h file can differ
between targets, there are no default include folders for Polyspace stub files.

If the compiler has implicit include files, manually specify those include files, as shown in
this example.

(_polyspace_stdstubs.c located in <<results_dir>>/C-ALL/C-STUBS)

_polyspace_stdstubs.c

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)

#include <string.h>

size_t strlen(const char *s)

{

 size_t i=0;

9 Troubleshooting Verification Problems

9-52

 while (s[i] != 0)

 i++;

 return i;

}

#endif /* _polyspace_strlen */

If problems persist, try one of these solutions:

• “Create _polyspace_stdstubs.c File with Required Includes” on page 9-52
• “Provide .c file Containing Prototype Function” on page 9-53
• “Ignore _polyspace_stdstubs.c” on page 9-54

Create _polyspace_stdstubs.c File with Required Includes

1 Copy <<results_dir>>/C-ALL/C-STUBS/ _polyspace_stdstubs.c to the
sources folder and rename it polyspace_stubs.c.

This file contains the whole list of stubbed functions, user functions, and standard
library functions. For example:

#define _polyspace_strlen

#define a_user_function

2 Find the problem function in the file. For example:

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)

#include <string.h>

 size_t strlen(const char *s)

 {

 size_t i=0;

 while (s[i] != 0)

 i++;

 return i;

 }

#endif /* __polyspace_strlen */

The verification requires you to include the string.h file that the application uses.
3 Provide the string.h file that contains the real prototype and type definitions for

the stubbed function.

Alternatively, extract the relevant part of that file for inclusion in the verification.

For example, for strlen:

 Standard Library Function Stubbing Errors

9-53

string.h

 // put it in the /homemade_include folder

 typedef int size_t;

 size_t strlen(const char *s);

4 Specify the path for the include files and relaunch Polyspace, using one of these
commands:

polyspace-code-prover-nodesktop -I /homemade_include

or

polyspace-code-prover-nodesktop -I /our_target_include_path

Provide .c file Containing Prototype Function

1 Identify the function causing the problem (for example, sprintf).
2 Add a .c file to your verification containing the prototype for this function.
3 Restart the verification either from the Project Manager perspective or from the

command line.

You can find other __polyspace_no_function_name options in
_polyspace__stdstubs.c files, such as:

__polyspace_no_vprintf

__polyspace_no_vsprintf

__polyspace_no_fprintf

__polyspace_no_fscanf

__polyspace_no_printf

__polyspace_no_scanf

__polyspace_no_sprintf

__polyspace_no_sscanf

__polyspace_no_fgetc

__polyspace_no_fgets

__polyspace_no_fputc

__polyspace_no_fputs

__polyspace_no_getc

Note: If you are considering defining multiple project generic -D options, using the
-include option can provide a more efficient solution to this type of error. Refer to
“Gather Compilation Options Efficiently”.

9 Troubleshooting Verification Problems

9-54

Ignore _polyspace_stdstubs.c

When all other troubleshooting approaches have failed, you can try ignoring
_polyspace_stdstubs.c. To ignore _polyspace_stdstubs.c, but still see which
standard library functions are in use:

1 Do one of the following:

• Deactivate all standard stubs using -D POLYSPACE_NO_STANDARD_STUBS
option. For example:

polyspace-code-prover-nodesktop -D POLYSPACE_NO_STANDARD_STUBS

• Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_STANDARD_STUBS. For example:

polyspace-code-prover-nodesktop -D

POLYSPACE_STRICT_ANSI_STANDARD_STUBS

This approach presents a list of functions Polyspace software tries to stub. It
also lists the standard functions in use (most probably without a prototype), and
generates the following type of message:

* Function strcpy may write to its arguments and may

return parts of them. Does not model pointer effects.

Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype

2 Add an include file in the C file that uses your standard library function. If you
restart Polyspace with the same options, the default behavior results for these stubs
for this particular function.

Consider the example size_t strcpy(char *s, const char *i) stubbed to

• Write anything in *s
• Return any possible size_t

 Automatic Stubbing Errors

9-55

Automatic Stubbing Errors

In this section...

“Three Types of Error Messages” on page 9-55
“Unknown Prototype Error” on page 9-55
“Parameter -entry-points Error” on page 9-55

Three Types of Error Messages

The Polyspace software generates three different types of error messages during the
automatic creation of stubs.

For more information about stubbing errors, see “Standard Library Function Stubbing
Errors” on page 9-49.

Unknown Prototype Error

Message

Fatal error: function 'f' has unknown prototype

Error message explanation:

- "function has wrong prototype" means that either the function

 has no prototype or its prototype is not ANSI compliant.

- "task is undefined" means that a function has been declared

 to be a task but has no known body

Solution

Provide an ANSI-compliant prototype.

Parameter -entry-points Error

Message

*** Verifier found an error in parameter -entry-points: task "w"

must be a userdef function

--- ---

--- ---

9 Troubleshooting Verification Problems

9-56

--- Found some errors in launching command. ---

--- Please consult rte-kernel -h to correct them ---

--- and launch the verification again. ---

--- ---

--- ---

Solution

A function or procedure declared to be an -entry-points cannot be an automatically
stubbed function.

 Reduce Verification Time

9-57

Reduce Verification Time

In this section...

“Factors Affecting Verification Time” on page 9-57
“Techniques to Improve Verification Performance” on page 9-57
“Tune Polyspace Parameters” on page 9-60
“Subdivide Code” on page 9-60
“Reduce Procedure Complexity” on page 9-68
“Reduce Task Complexity” on page 9-71
“Reduce Variable Complexity” on page 9-71
“Choose Lower Precision” on page 9-72

Factors Affecting Verification Time

These factors affect how long it takes to run a verification:

• The size of the code
• The number of global variables
• The nesting depth of the variables (the more nested they are, the longer it takes)
• The depth of the call tree of the application
• The intrinsic complexity of the code, particularly with regards to pointer manipulation

Because many factors affect verification time, there is no precise formula for calculating
verification duration. Instead, Polyspace software provides graphical and textual output
to indicate how the verification is progressing.

Techniques to Improve Verification Performance

This section suggests methods to reduce the duration of a particular verification, with
minimal compromise for the launch parameters or the precision of the results.

You can increase the size of a code sample for effective analysis by tuning the tool for
that sample. Beyond that point, subdividing the code or choosing a lower precision level
offers better results (-O1, -O0).

9 Troubleshooting Verification Problems

9-58

You can use several techniques to reduce the amount of time required for a verification,
including

• “Errors From Disk Defragmentation and Antivirus Software” on page 9-10
• “Tune Polyspace Parameters” on page 9-60
• “Subdivide Code” on page 9-60
• “Reduce Procedure Complexity” on page 9-68
• “Reduce Task Complexity” on page 9-71
• “Reduce Variable Complexity” on page 9-71
• “Choose Lower Precision” on page 9-72

You can combine these techniques. See the following performance-tuning flow charts:

• “Standard Scaling Options Flow Chart” on page 9-59
• “Reduce Code Complexity” on page 9-59

 Reduce Verification Time

9-59

Standard Scaling Options Flow Chart

No

Yes

Yes

Hardware
configuration

OK?

Yes

Make sure no other
verification is running.

CPU must be > 1 GHz.
Memory must be > 1 GB x #processors.
Swap files must be > 1 GB or
>= min(4 GB, memory size).
/tmp must be > 10 MB.

Application >
50K lines?

Application >
10K lines?

Still
blocked?

Slow verification can be normal.
Consider splitting the application
or using -unit-by-unit verification.

Slow verification can be normal
using a generated main.
Consider using -unit-by-unit
verification.
Manually generate a main for the
application.

If you have passed level 0, you
have meaningful results at level 0;
open the PolySpace Viewer.
Set tuning options when relevant.
Reduce procedure complexity.

Yes

Yes

No

Reduce Code Complexity

To reduce code complexity, try the following techniques, in the order listed:

• “Reduce Procedure Complexity” on page 9-68

9 Troubleshooting Verification Problems

9-60

• “Reduce Task Complexity” on page 9-71
• “Reduce Variable Complexity” on page 9-71

After you use any of these techniques, restart the verification.

Tune Polyspace Parameters

Impact of Parameter Settings

Compromise to balance the time required to perform a verification and the time required
to review the results. Launching Polyspace verification with the following options reduces
the time taken for verification. However, these parameter settings compromise the
precision of the results. The less precise the results of the verification, the more time you
can spend reviewing the results.

Recommended Parameter Tuning

Use the parameters in the sequence listed. If the first suggestion does not increase the
speed of verification sufficiently, then introduce the second, and so on.

• Switch from -O2 to a lower precision.
• Set the -respect-types-in-globals and -respect-types-in-fields options.
• Set the -k-limiting option to 2, then 1, or 0.
• Manually stub missing functions which write into their arguments.
• If some code uses some large arrays, use the -no-fold option.

For example:

polyspace-code-prover-nodesktop -O0 -respect-types-in-globals -k-

limiting 0

Subdivide Code

• “An Ideal Application Size” on page 9-61
• “Benefits of Subdividing Code” on page 9-61
• “Possible Issues with Subdividing Code” on page 9-61
• “Approach” on page 9-63

 Reduce Verification Time

9-61

• “Select a Subset of Code” on page 9-64

An Ideal Application Size

People have used Polyspace software to analyze numerous applications with greater than
100,000 lines of code.

There is a trade-off between the time and resources required to analyze an application,
and the resulting selectivity. The larger the project size, the broader the approximations
Polyspace software makes. Broader approximations produce more oranges. Large
applications can require you to spend much more time analyzing the results and your
application.

These approximations enable Polyspace software to extend the range of project sizes it
can manage, to perform the verification further, and to solve traditionally incomputable
problems. Balance the benefits derived from verifying a whole large application against
the loss of precision that results.

Benefits of Subdividing Code

Subdividing a large application into smaller subsets of code provides several benefits.
You:

• Quickly isolate a meaningful subset
• Keep all functional modules
• Can maintain a high precision level (for example, level O2)
• Reduce the number of orange items
• Do not have to remove threads that affect shared data
• Reduce the code complexity considerably

Possible Issues with Subdividing Code

Subdividing code can lead to these problems:

• Orange checks can result from a lack of information regarding the relationship
between modules, tasks, or variables.

• Orange checks can result from using too wide a range of values for stubbed functions.
• Some loss of precision; the verification consider all possible values for a variable.

9 Troubleshooting Verification Problems

9-62

When the Application is Incomplete

When the code consists of a small subset of a larger project, Polyspace software
automatically stubs many procedures. Polyspace bases the stubbing on the specification
or prototype of the missing functions. Polyspace verification assumes that all possible
values for the parameter type are returnable.

Consider two 32-bit integers a and b, which are initialized with their full range due to
missing functions. Here, a*b causes an overflow, because a and b can be equal to 2^31.
Precise stubbing can reduce the number of incidences of these data set issue orange
checks.

Now consider a procedure f that modifies its input parameters a and b. f passes both
parameters by reference. Suppose a can be from 0 through 10, and b any value between
-10 and 10. In an automatically stubbed function, the combination a=10 and b=10 is
possible, even if it is not possible with the real function. This situation introduces orange
checks in a code snippet such as 1/(a*b - 100), where the division would be orange.

• So, even with precise stubbing, verification of a small section of code can introduce
extra orange checks. However, the net effect from reducing the complexity is to reduce
the total number of orange checks.

• With default stubbing, the increase in the number of orange checks as the result of
this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size

Polyspace can make approximations when computing the possible values of the variables,
at any point in the program. Such an approximation use a superset of the actual possible
values.

For instance, in a relatively small application, Polyspace software can retain detailed
information about the data at a particular point in the code. For example, the variable
VAR can take the values
{ –2 ; 1 ; 2 ; 10 ; 15 ; 16 ; 17 ; 25 }

If the code uses VAR to divide, the division is green (because 0 is not a possible value).

If the program is large, Polyspace software simplifies the internal data representation by
using a less precise approximation, such as:

[-2 ; 2] U {10} U [15 ; 17] U {25}

Here, the same division appears as an orange check.

 Reduce Verification Time

9-63

If the complexity of the internal data becomes even greater later in the verification,
Polyspace can further simplify the VAR range to (for example):

[-2 ; 20]

This phenomenon increases the number of orange warnings when the size of the program
becomes large.

Approach

Begin with file-by-file verifications (when dealing with C language), package-by-package
verifications (when dealing with Ada language), and class-by-class verifications (when
dealing with C++ language).

The maximum application size is between 20,000 (for C++) and 50,000 lines of code (for
C and Ada). For such applications of that size, approximations are not too significant.
However, sometimes verification time is extensive.

Experience suggests that subdividing an application before verification normally has
a beneficial impact on selectivity. The verification produces more red, green and gray
checks, and fewer unproven orange checks. This subdivision approach makes bug
detection more efficient.

Size (lines of code)

Best usage: 20 KB - 50 KB
lines of code

Oranges due to
missing parts of
the software

Oranges due to
complexity

% of oranges

A compromise between selectivity and size

9 Troubleshooting Verification Problems

9-64

Polyspace verification is most effective when you use it as early as possible in the
development process, before any other form of testing.

When you analyze a small module (for example, a file, piece of code, or package) using
Polyspace software, focus on the red and gray checks. orange unproven checks at this
stage are interesting, because most of them deal with robustness of the application. The
orange checks change to red, gray, or green as the project progresses and you integrate
more modules.

In the integration process, code can become so large (50,000 lines of code or more). This
amount of code can cause the verification to take an unreasonable amount of time. You
have two options:

• Stop using Polyspace verification at this stage (you have gained many benefits
already).

• Analyze subsets of the code.

Select a Subset of Code

Subdividing a project for verification takes considerably less verification time for the sum
of the parts than for the whole project considered in one pass. Consider data flow when
you subdivide the code.

Consider two distinct concepts:

• Function entry-points — Function entry-points refer to the Polyspace execution
model, because they start concurrently, without assumptions regarding sequence or
priority. They represent the beginning of your call tree.

• Data entry-points — Regard lines in the code that acquire data as data entry points.

Example 1

int complete_treatment_based_on_x(int input)

{

 thousand of line of computation...

}

Example 2

void main(void)

{

 int x;

 Reduce Verification Time

9-65

 x = read_sensor();

 y = complete_treatment_based_on_x(x);

}

Example 3

#define REGISTER_1 (*(int *)0x2002002)

void main(void)

{

 x = REGISTER_1;

 y = complete_treatment_based_on_x(x);

}

In each case, the x variable is a data entry point and y is the consequence of such an
entry point. y can be formatted data, due to a complex manipulation of x.

Because x is volatile, a probable consequence is that y contains all possible formatted
data. You could remove the procedure complete_treatment_based_on_x completely,
and let automatic stubbing work. The verification process considers y as potentially
taking any value in the full range data.

//removed definition of complete_treatment_based_on_x

void main(void)

{

 x = ... // what ever

 y = complete_treatment_based_on_x(x); // now stubbed!

}

Typical Examples of Removable Components, According to the Logic of the Data

Here are some examples of removable components, based on the logic of the data:

• Error management modules often contain a large array of structures accessed
through an API, but return only a Boolean value. Removing the API code and
retaining the prototype causes the automatically generated stub to return a value
in the range [-2^31, 2^31-1], which includes 1 and 0. Polyspace considers the
procedure able to return all possible values.

• Buffer management for mailboxes coming from missing code – Suppose an
application reads a huge buffer of 1024 char. The application then uses the buffer to
populate three small arrays of data, using a complicated algorithm before passing it
to the main module. If the verification excludes the buffer, and initializes the arrays
with random values instead, then the verification of the remaining code is just the
same.

9 Troubleshooting Verification Problems

9-66

• Display modules

Subdivision According to Data Flow

Consider the following example.

var4

var5

var6

var1

var2

var3

Module A
containing more
than one function

Module B
containing more
than one function

Module A reads variables
and produces variables

 var1,var2,var3
var4,var5,var6

A1
 A2
 A3

B1
 B2
 B3

In this application, var1, var2, and var3 can vary between the following ranges:

var1 From 0 through 10
var2 From 1 through 100
var3 From –10 through 10

Module A consists of an algorithm that interpolates between var1 and var2. That
algorithm uses var3 as an exponential factor, so when var1 is equal to 0, the result in
var4 is also equal to 0.

As a result, var4, var5, and var6 have the following specifications:

Ranges var4

var5

var6

Between –60 and 110
From 0 through 12
From 0 through 100

Properties And a set of properties
between variables

• If var2 is equal to 0, then var4 > var5 >
5.

• If var3 is greater than 4, then var4 <
var5 < 12

• ...

 Reduce Verification Time

9-67

Subdivision in accordance with data flow allows you to analyze modules A and B
separately:

• A uses var1, var2, and var3, initialized respectively to [0;10], [1;100], and
[-10;10].

• B uses var4, var5, and var6, initialized respectively to [-60;110], [0;12], and
[-10;10].

The consequences are:

• A slight loss of precision on the B module verification, because now Polyspace
considers all combinations for var4, var5, and var6. It includes all possible
combinations, even those combinations that the module A verification restricts.

For example, if the B module included the test

If var2 is equal to 0, then var4 > var5 > 5

then the dead code on any subsequent else clause is undetected.
• An in-depth investigation of the code is not required to isolate a meaningful subset. It

means that a logical split is possible for an application, in accordance with the logic of
the data.

• The results remain valid, because there is no requirement to remove, for example, a
thread that changes shared data.

• The code is less complex.
• You can maintain the maximum precision level.

 Typical examples of removable components:

• Error management modules. A function has_an_error_already_occurred
can return TRUE or FALSE. Such a module can contain a large array of structures
accessed through an API. Removing API code with the retention of the prototype
results in the Polyspace verification producing a stub that returns [-2^31,
2^31-1]. That result clearly includes 1 and 0 (yes and no). The procedure
has_an_error_already_occurred returns all possible values.

• Buffer management for mailboxes coming from missing code. Suppose the code
reads a large buffer of 1024 char and then collates the data into three small arrays
of data, using a complicated algorithm. It then gives this data to a main module for
treatment. For the verification, Polyspace can remove the buffer and initialize the
arrays with random values.

9 Troubleshooting Verification Problems

9-68

• Display modules.

Subdivide According to Real-Time Characteristics

Another way to split an application is to isolate files which contain only a subset of tasks,
and to analyze each subset separately.

If a verification initiates using only a few tasks, Polyspace loses information regarding
the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and reads it at a particular moment, the values of x affect subsequent
operations in T2.

For example, consider that T1 can write either 10 or 12 into x and that T2 can both write
15 into x and read the value of x. Two ways to achieve a sound standalone verification of
T2 are:

• You could declare x as volatile to take into account all possible executions. Otherwise,
x takes only its initial value or x variable remains constant, and verification of T2 is
a subset of possible execution paths. You can get precise results, but it includes one
scenario among all possible states for the variable x.

• You could initialize x to the whole possible range [10;15], and then call the T2
entry-point. Use this approach if x is calibration data.

Subdivide According to Files

This method is simple, but it can produce good results when you are trying to find defects
in gray code.

Simply extract a subset of files and perform a verification using one of these approaches:

• Use entry points.
• Create a main that calls randomly functions that the subset of the code does not call.

Reduce Procedure Complexity

If the log file does not display any messages for several hours, you probably have a
scaling issue. You can reduce the complexity of some of the procedures by cloning the

 Reduce Verification Time

9-69

calling context for specific procedures. One way to reduce complexity is to specify the -
inline option on procedures whose names appear in the log file in one or both of two
lists.

The -inline option creates clones of each specified procedure for each call to it. This
option reduces the number of aliases in a procedure, and can improve precision in some
situations.

Suppose that the log file contains two lists that look like the following:

%%% BEGIN PRE%%%

* inlining procedure_1 could decrease the number of aliases of parameter #3 from 752

 to 3

* inlining procedure_2 could decrease the number of aliases of parameter #3 from 2687

 to 3

* inlining procedure_3 could decrease the number of aliases of parameter #4 from 1542

 to 4

…

%%%END PRE%%%

%%% BEGIN PRE%%%

…

procedures that write the biggest sets of aliases: procedure_4 (2442),

 procedure_2 (1120),

procedure_5 (500)

…

%%%END PRE%%%

Looking at this example log file, procedure_1 through procedure_5 are good
candidates to be inlined.

Follow the steps on this flow chart to determine which procedure_x must be inlined,
that is, for which procedure_x you need to specify the -inline option.

9 Troubleshooting Verification Problems

9-70

Do you need to inline
procedure_x?

Yes

Add
procedure_x

to the -inline list

Yes

No
Is

procedure_x
in the

two lists
?

Does
procedure_x

have < 20
lines

?

Does
procedure_x

write into
its own

parameters
?

Does
procedure_x

have no
loops

?
Yes

Yes

Yes

Does
procedure_x

pass pointer
parameters to

another procedure
(procedure_y)

?

No

Do not
inline

procedure_x

Add
procedure_y

to the -inline list if and only if
procedure_y

is called outside the context of
procedure_x

Does
procedure_x

have variable #
of arguments

?

Yes

No No No No

Here are three example situations:

• Using the preceding log file, inline procedure_2 because it appears in both lists. In
addition, if it has no loops, inline procedure_5.

• Inline procedures that have a variable number of arguments, such as printf and
sprintf.

• In the following examples, consider whether each procedure, procedure_x, passes its
pointer parameters to another procedure.

 Reduce Verification Time

9-71

Does this procedure pass pointer parameters?

Yes No No

void procedure_x(int *p)

{

 procedure_y(p)

}

void procedure_x(int q) void procedure_x(int *r)

{

 *r = 12

}

Exercise caution when you inline procedures. Inlining duplicates code and can drastically
increase the number of lines of code, resulting in increased computation time.

For example, suppose procedure_2 has 30 lines of codes and is called 30 times;
procedure_5 has 100 lines of code and is called 50 times. The number of lines of code
becomes more than 5000 lines, so computation time increases.

Reduce Task Complexity

If the code contains two or more tasks, and particularly if there are more than 10,000
alias reads, set the option Reduce task complexity (-lightweight-thread-model).
This option reduces:

• Task complexity
• Verification time

However, using this option causes more oranges and a loss of precision on reads of shared
variables through pointers.

Reduce Variable Complexity

Variable Characteristic Action

The types are complex. Set the -k-limiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain precision.
There are large arrays Set the -no-fold option.

9 Troubleshooting Verification Problems

9-72

Choose Lower Precision

The amount of simplification applied to the data representations depends on the required
precision level (O0, O2), Polyspace software adjusts the level of simplification. For
example:

• -O0 — shorter computation time
• -O2 — less orange warnings
• -O3 — less orange warnings and longer computation time. Use this option for projects

containing less than 1,000 lines of code.

 Storage of Temporary Files

9-73

Storage of Temporary Files

By default, Polyspace uses the standard /tmp or C:\Temp folder to store temporary files.
If you do not have write permissions for your temporary folder, you can encounter the
error, Unable to create folder "C:\Temp\Polyspace\foldername. There are
two possible solutions to this error:

• Change the permissions of your standard temporary folder so you have full read and
write privileges.

• Specify the option -tmp-dir-in-results-dir. Instead of the standard temporary
folder, Polyspace uses a subfolder of the results folder. Using this option may affect
processing speed if the results folder is mounted on a network drive. Use this option
only when the temporary folder partition is not large enough and troubleshooting is
required. You can specify -tmp-dir-in-results-dir through a line command or
the Advanced Settings > Other field.

9-74

10

Reviewing Verification Results

• “Open Remote Verification Results” on page 10-3
• “Download Remote Verification Results From Command Line” on page 10-4
• “Open Results of File-by-File Batch Verification” on page 10-5
• “Open Results of File-by-File Verification” on page 10-6
• “Open Local Verification Results” on page 10-7
• “Search Results in Results Manager” on page 10-9
• “Set Character Encoding Preferences” on page 10-12
• “Open Results for Generated Code” on page 10-15
• “Review Results Progressively” on page 10-16
• “Assign Review Status to Result” on page 10-18
• “Organize Results Using Review Scopes” on page 10-24
• “Organize Results Using Filters and Groups” on page 10-27
• “View Call Sequence for Checks” on page 10-36
• “View Call Tree for Functions” on page 10-37
• “View Access Graph for Global Variables” on page 10-41
• “Customize Review Status” on page 10-42
• “Use Range Information in Results Manager” on page 10-47
• “View Pointer Information in Results Manager” on page 10-51
• “View Probable Cause for Checks” on page 10-52
• “Check Colors” on page 10-55
• “Source Code Colors” on page 10-56
• “Results Manager Overview” on page 10-57
• “Results Summary” on page 10-58
• “Source” on page 10-62
• “Check Details” on page 10-76

10 Reviewing Verification Results

10-2

• “Check Review” on page 10-77
• “Call Hierarchy” on page 10-79
• “Variable Access” on page 10-82
• “Red Checks” on page 10-90
• “Gray Checks” on page 10-91
• “Orange Checks” on page 10-93
• “Color Sequence of Checks” on page 10-96
• “Defects from Code Integration” on page 10-100
• “Defects in Unprotected Shared Data” on page 10-101
• “Defects Related to Pointers” on page 10-102
• “Global Variables” on page 10-105
• “Dataflow Verification” on page 10-107
• “Results Folder” on page 10-108
• “Reusing Review Comments” on page 10-111
• “Import Review Comments from Previous Verifications” on page 10-112
• “View Checks and Comments Report” on page 10-114
• “Generate Report from User Interface” on page 10-115
• “Generate Report from Command Line” on page 10-117
• “Open Report” on page 10-119
• “Customize Report Templates” on page 10-121

 Open Remote Verification Results

10-3

Open Remote Verification Results

Use Polyspace Metrics to open results from a remote verification.

1 In the address bar of your Web browser, enter the following URL:

protocol://ServerName:PortNumber

• protocol is either http (default) or https.
• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080).

For reference, save the Polyspace Metrics Web page as a bookmark.

2 Click the Project or Version cell of your verification.

The software downloads and opens the results in the Results Manager perspective of
Polyspace Code Prover.

For more information, see:

• “Set Up Polyspace Metrics”
• “Results Manager Overview”

10 Reviewing Verification Results

10-4

Download Remote Verification Results From Command Line

To download verification results from the command line, use the polyspace-jobs-
manager command:
MATLAB_Install\polyspace\bin\polyspace-jobs-manager -download

-job Verification_ID -results-folder FolderPath

For more information, see “Manage Remote Analyses at the Command Line”.

After downloading results, use the Results Manager to view the results. See “Open Local
Verification Results”.

 Open Results of File-by-File Batch Verification

10-5

Open Results of File-by-File Batch Verification

This example shows how to open the results of a file-by-file batch verification. When you
run a file-by-file batch verification, the software submits each source file separately for
verification. Polyspace Metrics displays these verifications using a tree structure.

Before you view the results, you must run a file-by-file batch verification. For more
information, see “Run File-by-File Batch Verification”.

1 Open your results in Polyspace Metrics. For more information, see “Open Remote
Verification Results”.

2 Select the Runs tab.
3 To download and open results for all files in the project:

a In the parent row, click the Project or Version cell.
b Select the Download all results sets check box. Then click OK.

4 To download and open results for a specific file:

a In the parent row, click the Project or Version cell.
b In the Select the results set to review dialog box, from the Results Set drop-

down list, select the results that you want to review. Then click OK.

10 Reviewing Verification Results

10-6

Open Results of File-by-File Verification

This example shows how to open the results of a file-by-file verification performed in the
user interface. For more information on running the verification, see “Run File-by-File
Verification”. After verification, your results appear in the Project Browser under the
Result node in your module.

1 To open result for each source file, double-click the corresponding result file under
the Result node. The result file has the same name as the source file.

2 To see an overview of the verification:

a
Under the Result node, right-click the icon.

b Select Open Folder with File Manager.

Your result folder opens in your file explorer.
c Open the html file Synthesis in the result folder.

 Open Local Verification Results

10-7

Open Local Verification Results

1 In the Project Manager perspective, on the Project Browser, navigate to the results
that you want to review.

2 Double-click the results file, for example, Result_1.

The software opens the verification results in the Results Manager perspective.

10 Reviewing Verification Results

10-8

Alternatively:

1 On the Polyspace Code Prover toolbar, select File > Open Result.
2 In the Open Results dialog box, navigate to the results folder. For example:

My_project\Module_1\Result_1

3 Select the results file, for example, My_project.pscp.
4 Click Open.

 Search Results in Results Manager

10-9

Search Results in Results Manager

This example shows how to search for occurrences of a variable or function name in the
source code. Search for the variable or function name in the following situations:

• A read/write operation on a variable causes a check. However, the check might be
related to an instruction prior to this read/write operation.

Selecting a check in the Results Summary pane displays the read/write operation
only. On the Source pane, you can look in the source code for prior instructions
containing the variable name. Instead, searching for the occurrences is an easier way
to find and quickly navigate to them.

For instance, consider the check, Out of bounds array index. Though an access
operation on the array causes the check, it is useful to quickly navigate to the array
declaration.

• A function call causes a check. However, the check might be related to an instruction
in the function definition. Therefore, it is useful to quickly navigate to the function
definition.

Search Variable Name

1 On the Source pane, right-click the variable name and select Search For All
References.

10 Reviewing Verification Results

10-10

The Search tab displays all occurrences of the variable name.

2 To navigate to a particular occurrence of the variable name in the source code, use
the up and down arrow keys.

The Source pane displays the corresponding line of code.

 Search Results in Results Manager

10-11

3 If the variable is a global variable, use Variable Access pane. For more
information, see “Variable Access”.

Search Function Name

1 On the Source pane, right-click the function name and select Search For All
References.

The Search tab displays all occurrences of the function name.
2 To navigate to a particular occurrence of the function name in the source code, use

the up and down arrow keys.

The Source pane displays the corresponding line of code.
3 To navigate from a function call to the function definition, right-click the function

name and select Go To Definition.

10 Reviewing Verification Results

10-12

Set Character Encoding Preferences

If the source files that you want to verify are created on an operating system that uses
different character encoding than your current system (for example, when viewing files
containing Japanese characters), you receive an error message when you view the source
file or run certain macros.

The Character encoding option allows you to view source files created on an operating
system that uses different character encoding than your current system.

To set the character encoding for a source file:

1 Select Tools > Preferences.
2 In the Polyspace Preferences dialog box, select the Character encoding tab.

 Set Character Encoding Preferences

10-13

10 Reviewing Verification Results

10-14

3 Select the character encoding used by the operating system on which the source file
was created.

4 Click OK.
5 Close and restart the Polyspace verification environment to use the new character

encoding settings.

 Open Results for Generated Code

10-15

Open Results for Generated Code

When opening results for automatically generated code, the software must know which
code generator created the code, so that it can interpret comments and create back-to-
source links in the Results Manager perspective.

If you start the verification from Simulink, the software automatically creates a file
in the results folder called code_generator_used.txt to provide this information.
Otherwise, you must provide this information manually.

To manually specify the code generator that created the code:

1 Open your results in the Results Manager perspective.
2 Select Tools > Code Generator Support > code_generator

Manually Create the Code Generator Text File

To avoid specifying the code generator each time you open your results, you can manually
create a file named code_generator_used.txt in your results folder. The software
then automatically uses this file each time you open the results.

The format of this file is:

<Code generator>

MATLABROOT=<Path to MATLAB>

ModelVersion=<model name>:<model version>

<Code generator> can be either RTWEmbeddedCoder or TargetLink.

For example:

RTWEmbeddedCoder

MATLABROOT=C:\MATLAB\R2010b

ModelVersion=demo_ml:1.94

10 Reviewing Verification Results

10-16

Review Results Progressively

This example shows how to review checks progressively using the Results Manager
perspective.

Review Results

1 Select the first check on the Results Summary pane.

• The Source pane displays the source code for this check.
• The Check Details pane displays information about this check.

2 Review the check. For more information, see “Assign Review Status to Result”.
3 Click the forward arrow to go to the next check in the set. Review this check.
4 Continue to click the forward arrow until you have reviewed through all of the

checks.

Track Review Progress

1 To see what percentage of checks you have reviewed, broken down by color and type:

 Review Results Progressively

10-17

a On the Results Summary pane, select Group by > Family.
b For each color and type, view the entries in the Justified column.

2 To see what percentage of checks you have reviewed, broken down by file and
function:

a On the Results Summary pane, select Group by > File.
b For each file and function, view the entries in the Justified column.

Related Examples
• “Assign Review Status to Result”
• “View Call Sequence for Checks”

10 Reviewing Verification Results

10-18

Assign Review Status to Result

This example shows how to review and comment checks using the Results Manager
perspective. When reviewing checks, you can assign a status to checks, and enter
comments to describe the results of your review. These actions help you to track the
progress of your review and avoid reviewing the same check twice.

Review Individual Check

1 On the Results Summary pane, select the check that you want to review.

The Check Details pane displays information about the current check.

The Check Review pane displays fields where you can enter review information.

 Assign Review Status to Result

10-19

2 Select a Classification to describe the severity of the issue:

10 Reviewing Verification Results

10-20

• Unset

• High

• Medium

• Low

• Not a defect

3 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Other

• Restart with different options

• Undecided

4 To justify the check, select one of the Status options, Justify with annotations
or No action planned.

To view the percentage of checks justified per file and function:

a On the Results Summary pane, select Group by > File.
b View the entries on the Justified column.

5 In the Comment field, enter remarks, for example, defect or justification
information.

Note: You can also enter the review information through the Classification, Status,
and Comment fields on the Results Summary pane.

Review Group of Checks

1 On the Results Summary pane, select a group of checks using one of the following
methods:

 Assign Review Status to Result

10-21

• For contiguous checks, left-click the first check. Then Shift-left click the last
check.

To group together checks belonging to a certain category, click the Check column
header on the Results Summary pane.

• For non-contiguous checks, Ctrl-left click each check.

• For checks of a similar color and category, right-click one check. From the context
menu, select Select All Color TypeChecks

10 Reviewing Verification Results

10-22

For instance, select Select All Orange "Illegally dereferenced pointer"
Checks.

2 On the Check Review tab, enter the required information. The software applies
this information to the selected checks.

Save Review Comments

After you have reviewed your results, save your comments with the verification results.
Saving your comments makes them available the next time that you open the results file,
allowing you to avoid reviewing the same check twice.

To save your review comments, select File > Save. Your comments are saved with the
verification results.

Track Review Progress

1 To see what percentage of checks you have reviewed, broken down by color and type:

a On the Results Summary pane, select Group by > Family.
b For each color and type, view the entries in the Justified column.

2 To see what percentage of checks you have reviewed, broken down by file and
function:

a On the Results Summary pane, select Group by > File.
b For each file and function, view the entries in the Justified column.

Related Examples
• “Organize Results Using Filters and Groups”

 Assign Review Status to Result

10-23

• “Customize Review Status”
• “Review Coding Rule Violations”

10 Reviewing Verification Results

10-24

Organize Results Using Review Scopes
This example shows how to define and use a custom review scope to control the number
and type of orange checks displayed on the Results Summary pane. Define a custom
methodology to:

• Prioritize the orange checks that you review.
• Set standards that your team of developers must meet.

Define a Custom Scope

1 In the Polyspace user interface, select Tools > Preferences.
2 In the Polyspace Preferences dialog box, select the Review Scope tab.
3 From the drop-down list on this tab, select Add a scope....
4 Enter a name for your scope in the Create a new scope dialog box. For this example,

enter the name, My_Scope. Then, click Enter.

5 If you want to specify orange checks by percentage instead of number, select Specify
percentage of green and justified orange checks.

The percentage is calculated by:
(green checks + justified orange checks) x 100/(green checks + total orange checks)

6 Enter the total number of checks (or percentage of checks) to display for each type of
check for your methodology. If you want to review all orange checks of a certain type,
enter ALL.

 Organize Results Using Review Scopes

10-25

In this example, ALL was entered for ZDV indicating that all Division by Zero
orange checks must be displayed when you choose Show > My_Scope on the
Results Summary pane.

Click OK to save the scope and close the dialog box.

Use Your Custom Scope

1 Open your verification results.

10 Reviewing Verification Results

10-26

2 On the Results Summary pane, select Show > My_Scope.

The Results Summary pane displays orange checks according to the definition
specified for My_Scope. For instance, it displays all Division by Zero orange
checks.

Related Examples
• “Organize Check Review”
• “Organize Results Using Filters and Groups”

 Organize Results Using Filters and Groups

10-27

Organize Results Using Filters and Groups

This example shows how to filter and group checks on the Results Summary pane. To
organize your review of checks, use filters and groups when you want to:

• Review certain categories of checks in preference to others. For instance, you first
want to address checks resulting from Out of bounds array index.

• Not address the full set of coding rule violations detected by the coding rules checker.
• Not review checks you have already justified.

Typically, in your second or later rounds of review, you would have some checks
already justified.

• Review only those checks that you have already assigned a certain status. For
instance, you want to review only those checks to which you have assigned the status,
Investigate.

• Review all checks in the body of a particular file or function. Because of continuity of
code, reviewing these checks together can help you organize your review process.

You can also review checks in a file if you have written the code for that file only and
not the entire set of source files used for verification.

• Not review the checks in automatically generated functions.
• C++ only: Review all checks dealing with a class definition.

Review Checks in a Given Category

1 To view red Out of bounds array index checks:

a On the Results Summary pane, select Group by > Family.

The checks are grouped by type of check.

10 Reviewing Verification Results

10-28

b Under the category Red Check, expand the subcategory Static memory.

You see the subcategory Out of bounds array index.

Expand Out of bounds array index to view all red checks of this kind.

 Organize Results Using Filters and Groups

10-29

To see further information about a check, select it. The information appears on
the Check Details pane.

2 To view orange Out of bounds array index checks, repeat the previous steps for
the subcategory Static memory under the category Orange Check.

3 To view only the checks resulting from the error, Out of bounds array index:

a On the Results Summary pane, select Group by > None.
b Place your cursor on the Check column head.

c Click the filter icon.

A context menu lists the filter options available.

d Clear the All check box.
e Scroll down to the Out of bounds array index check box and select it. Click

OK.

The Results Summary pane displays only the checks resulting from the Out of
bounds array index error.

Review Checks Not Justified

To review only the checks that you have not justified:

1 On the Results Summary pane, place your cursor on the Justified column head.

10 Reviewing Verification Results

10-30

2 Click the filter icon.

A context menu lists the filter options available.

3 Clear the True check box. Click OK.

The Results Summary pane displays only the checks that you have not justified.

Review Checks with Given Status

To review only the checks with Investigate status:

1 On the Results Summary pane, place your cursor on the Status column head.
2 Click the filter icon.

A context menu lists the filter options available.

 Organize Results Using Filters and Groups

10-31

3 Clear the All check box.
4 Select the Investigate check box. Click OK.

The Results Summary pane displays only the checks with the Investigate
status.

Review All Checks in a File

1 To review the checks in the file, tasks.cpp:

a On the Results Summary pane, select Group by > File.

The checks displayed are grouped by files. The file names are sorted
alphabetically. Within each file name, the checks are grouped by functions,
sorted alphabetically. Each file or function is colored by the most severe check
that occurs. The severity decreases in this order:

• Red
• Gray
• Orange
• Purple
• Green

10 Reviewing Verification Results

10-32

b To view the checks in tasks.cpp, expand any function name under the
category, tasks.cpp.

 Organize Results Using Filters and Groups

10-33

To view further information on a check, select the check. The information on the
check appears on the Check Details pane.

2 To view only the checks in tasks.cpp:

a On the Results Summary pane, select Group by > None.

The Results Summary pane displays all checks without any grouping.
b Place your cursor on the File column head.
c Click the filter icon.

A context menu lists the filter options available.

10 Reviewing Verification Results

10-34

3 Clear the All check box.
4 Select the tasks.cpp check box. Click OK.

The Results Summary pane displays only the checks in tasks.cpp.

 Organize Results Using Filters and Groups

10-35

Tip If you apply a filter on a column on the Results Summary pane, the column header
displays the number of rows suppressed.

Related Examples
• “Filter and Group Coding Rule Violations”

10 Reviewing Verification Results

10-36

View Call Sequence for Checks

This example shows how to display the call sequence that leads to the code line
associated with a check.

1 On the Results Summary pane, select the check that you want to review.
2

On the Check Details pane, click the Show error call graph button, .

A Graph tab appears, displaying the call graph.

3 Select a node to navigate to the procedure definition in the source code.

The Source pane displays the procedure definition.
4 Select the terminal node to navigate back to the code line associated with the check.

Related Examples
• “View Call Tree for Functions”
• “View Access Graph for Global Variables”

 View Call Tree for Functions

10-37

View Call Tree for Functions

In this section...

“View Callers and Callees of a Function” on page 10-37
“Navigate Call Tree” on page 10-40

The call tree (or call graph) shows the calling relationship between functions (and tasks)
in a program. From the call tree, for each function or task, foo, you can see its:

• Callers: functions and tasks calling foo.
• Callees: functions and tasks called by foo.

Sometimes, an error in a function might be related to an instruction in its callers or
callees. Therefore, to review errors quickly, it is useful to:

• View all callers and callees of a function without navigating in the source code. The
callers and callees are listed even for indirect calls through function pointers.

• Navigate quickly between a function, and its callers and callees.
• Verify dataflow for certification purposes. For more information, see “Dataflow

Verification”.

You can perform these tasks from the Call Hierarchy pane in the Results Manager
perspective.

For a complete description of the Call Hierarchy pane, see “Call Hierarchy”.

Note: If you do not see the Call Hierarchy pane in the Results Manager perspective,
select Window > Show/Hide View > Call Hierarchy.

View Callers and Callees of a Function

You can view all callers and callees of a function on the Call Hierarchy pane.

1 On the Results Summary pane or on the Source pane, select a check. The function
containing the check appears on the Call Hierarchy pane.

2 On the Call Hierarchy pane, select a callee of the function. The callees are listed

below the function name and marked by (functions) or (tasks).

10 Reviewing Verification Results

10-38

On the Source pane, the current line shows where the callee is called.

3 Select a caller name. These are listed below the function name and marked by
(functions) or (tasks).

In the Source pane, the current line shows where the caller calls the function.

4 View all branches of a callee by progressively clicking next to the callee name.

This figure displays the callee, Exec_One_Cycle, defined in the file, tasks2.c,
with all branches shown.

 View Call Tree for Functions

10-39

5 View all branches ending with the caller by progressively clicking next to the
caller name.

This figure displays the caller, Tserver, defined in the file, tasks1.c with all
branches shown.

Tip Instead of progressively viewing the branches by clicking , you can expand all
caller/callee names at once. Right-click anywhere in the Call Hierarchy pane. From
the context menu, select Expand All Nodes. You can collapse all caller/callee names
by right-clicking anywhere in the Call Hierarchy pane and selecting Collapse All
Nodes.

10 Reviewing Verification Results

10-40

Navigate Call Tree

To navigate between a function and its callers and callees in the source code:

1 Select a check contained in the function from the Results Summary pane. The Call
Hierarchy pane shows the function.

2 To navigate to a callee in the source code, double-click the callee name. These names

are listed below the function name and marked by (functions) or (tasks).
Alternatively, right-click the callee name and from the context menu, select Go To
Definition.

The Call Hierarchy pane now shows the callee. In the Source pane, the current
line shows the beginning of the callee function definition.

3 To navigate to a caller, double-click the caller name. These names are listed below
the function name and marked by (functions) or (tasks). Alternatively, right-
click the caller name and from the context menu, select Go To Definition.

The Call Hierarchy pane now shows the caller. In the Source pane, the current
line shows the beginning of the caller function definition.

Related Examples
• “View Call Sequence for Checks”
• “View Access Graph for Global Variables”

 View Access Graph for Global Variables

10-41

View Access Graph for Global Variables

This example shows how to display the access sequence for a read or write operation on a
global variable in the code.

1 On the Variable Access pane, select the variable that you want to view.
2

On the Variable Access pane toolbar, click the Show Access Graph button .

A window displays the access graph.

The access graph displays the function call sequence leading to read and write
operations on the variable. Each node of the graph represents a function.

3 On the graph, click a node to navigate to the corresponding function on the Source
pane.

• The Source pane displays the function definition.
• The Call Hierarchy pane displays the call tree of the function.

Related Examples
• “View Call Sequence for Checks”
• “View Call Tree for Functions”

More About
• “Variable Access”

10 Reviewing Verification Results

10-42

Customize Review Status

This example shows how to customize the statuses you assign on the Results Summary
or Check Review pane.

Define Custom Status

1 Select Tools > Preferences.
2 Select the Review Statuses tab.
3 Enter your new status in the Add a new status field and click Add.

 Customize Review Status

10-43

The new status appears in the User Statuses list.
4 Click OK to save your changes and close the dialog box.

10 Reviewing Verification Results

10-44

When reviewing checks, you can select the new status from the Status drop-down list on
the:

• Check Review pane.
• Results Summary pane.

Add Justification to Existing Status

By default, a check is automatically justified if you assign the status, Justify with
annotations or No action planned. However, you can change this default setting so
that a check is justified when you assign one of the other existing statuses.

To add justification to existing status Improve:

1 Select Tools > Preferences.
2 Select the Review Statuses tab. For the Improve status, select the check box in the

Justify column. Click OK.

 Customize Review Status

10-45

10 Reviewing Verification Results

10-46

If you assign the Improve status to a check on the Check Review or Results
Summary pane, the check gets automatically justified.

Related Examples
• “Assign Review Status to Result”

 Use Range Information in Results Manager

10-47

Use Range Information in Results Manager

This example shows how to use the variable range information available in the Results
Manager.

View Range Information

1 On the Source pane, place your cursor over an operator or variable. A tooltip
message displays the range information, if it is available. To retain the tooltip even
when you move the cursor away, press F2.

The displayed range information represents a superset of dynamic values, which the
software computes using static methods.

2 On the Source pane, select a check to display the error or warning message along
with range information on the Check Details pane.

Interpret Range Information

The software uses the following syntax to display range information of variables:

name (data_type) : [min1 .. max1] or [min2 .. max2] or [min3 .. max3] or exact value

The following are examples of range information displayed in tooltips on the Source
pane:

•

The tooltip message indicates that the variable v3 is a 32-bit integer with value
between 0 and 216..

10 Reviewing Verification Results

10-48

•

The tooltip message indicates that the returned value of the function
generic_validation is an 8-bit integer that has values between 0 and 7.

 Use Range Information in Results Manager

10-49

•

The tooltip message for the division operator / indicates that the:

• The division is performed on 32-bit integers.
• The left operand or dividend has value 1.
• The right operand or divisor has value between -1 and 9.
• The result has value between -1 and 1.

10 Reviewing Verification Results

10-50

• There is a possible Division by Zero error and the error arises because the
function input is stubbed.

Related Examples
• “Review Orange Check”
• “View Pointer Information in Results Manager”

 View Pointer Information in Results Manager

10-51

View Pointer Information in Results Manager
This example shows how to view information about pointers to variables or functions in
the Results Manager.

View Pointer Information on Source Pane

Place your cursor over a check related to a pointer variable or dereference character ([, -
>, *). A tooltip message displays pointer information. To retain the tooltip even when you
move the cursor away, press F2.

View Pointer Information on Check Details Pane

Click a check related to a pointer variable or dereference character. Further information
about the check appears on the Check Details pane.

Related Examples
• “Use Range Information in Results Manager”

10 Reviewing Verification Results

10-52

View Probable Cause for Checks

This example shows how to view the code sequence that is probably causing the check. In
some cases, on the Check Details pane, the software outlines the subset of code causing
the check.

View Code Sequence Causing Check

1 On the Results Summary pane, select a check.

In this example, the check Non-initialized local variable on line 47 is
selected.

2 On the Check Details pane, view the code sequence causing the check.

 View Probable Cause for Checks

10-53

Each statement of the sequence contains a line number and a comment. You can use
the information to understand and rectify your code.

3 To navigate to a statement in the code sequence, on the Check Details pane, click
the statement. The Source pane displays the relevant code.

4 To navigate to the probable cause of the check, on the Results Summary pane,
right-click the check. From the context menu, select Go To Cause.

View Input Variables or Functions Causing Check

For orange checks caused by input, when the code sequence is not available, the software
provides more information on input variables or functions causing the check. To view this
information:

1 On the Results Summary pane, select the check.

Further information on the check appears on the Check Details pane.
2

On the Check Details pane, select the icon.

10 Reviewing Verification Results

10-54

Information on source variables or functions causing the orange check appears on
the Orange Sources tab in the Check Details pane.

 Check Colors

10-55

Check Colors

Polyspace software presents verification results as colored entries in the source code.
There are four main colors in the results:

• Red – Indicates code that is proven to contain a certain error on all execution paths.
• Gray – Indicates unreachable code. Polyspace assigns a lighter gray color to code

deactivated due to conditional compilation, for instance in #ifdef statements.
• Orange – Indicates code that can contain an error on certain execution paths. For

more information, see “Sources of Orange Checks”.
• Green – Indicates code that is proven to not contain a certain error on all execution

paths.

Polyspace considers that all execution paths that contain a run-time error terminate at
the location of the error. Therefore:

• Following a red check, Polyspace does not analyze the remaining code in the same
scope as the check.

• Following an orange check, Polyspace analyzes the remaining code. But it considers
only the subset of execution paths that did not contain the run-time error.

More About
• “Source Code Colors”

10 Reviewing Verification Results

10-56

Source Code Colors

Polyspace uses the following color scheme for displaying code on the Source pane.

• For every check on the Results Summary pane, Polyspace assigns the check color to
the corresponding section of code.

• For lines containing macros, if the macro is collapsed, then Polyspace colors
the entire line with the color of the most severe check on the line. The severity
decreases in this order: red, gray, orange, green.

If there is no check in a line containing a macro, Polyspace underlines the line in
black when the macro is collapsed.

• For all other lines, Polyspace colors only the keyword or identifier associated with
the check.

• For every coding rule violation on the Results Summary pane, Polyspace assigns to
the corresponding keyword or identifier:

• A symbol if the coding rule is a predefined rule. The predefined rules available
are MISRA C, MISRA AC AGC, MISRA C++, or JSF C++.

• A symbol if the coding rule is a custom rule.
• If a tooltip is available for a keyword or identifier on the Source pane, Polyspace:

• Uses solid underlining for the keyword or identifier if it is associated with a check.
• Uses dashed underlining for the keyword or identifier if it is not associated with a

check.
• When a function is defined, Polyspace colors the function name in blue.
• Polyspace assigns a lighter shade of gray to code deactivated due to conditional

compilation. Such code occurs, for instance, in #ifdef statements where the macro
for a branch is not defined. This code has no effecton the verification.

More About
• “Check Colors”
• “Source”

 Results Manager Overview

10-57

Results Manager Overview

The Results Manager perspective has the following panes below the toolbar:

Pane Function

“Results Summary” List of checks (diagnostics) for each file and
function in the project

“Dashboard” • Graphical view of code coverage and
check distribution

• Top five orange checks (likely errors
in unproven code) and purple checks
(coding rule violations)

“Source” Source code for a selected check in the
procedural entities view

“Check Details” Details about the selected check
“Check Review” Review information about selected check
“Variable Access” Information about global variables declared

in the source code
“Call Hierarchy” Tree structure of function calls

You can resize or hide these sections.

10 Reviewing Verification Results

10-58

Results Summary

The Results Summary pane lists all checks along with their attributes. To organize
your check review, from the drop-down list on this pane, select one of the following
options:

• Group by > None: Lists all checks without any grouping. The checks are sorted in
the following order:

• Red – Indicates code that is proven to contain a certain error on all execution
paths.

• Gray – Indicates unreachable code.
• Orange – Indicates code that can contain an error on certain execution paths. For

more information, see “Sources of Orange Checks”.
• Green – Indicates code that is proven to not contain a certain error on all

execution paths.
• Purple – Indicates code that contain a coding rule violation.

• Group by > Family: Lists all checks grouped by color. Within each color, the checks
are grouped by category. For more information on the checks covered by a category,
see the check reference pages.

• Group by > Class: Lists all checks grouped by class. Within each class, the checks
are grouped by method. The first group, Global Scope, lists all checks not occurring
in a class definition.

This option is available for C++ code only.
• Group by > File: Lists all checks grouped by file. Within each file, the checks are

grouped by function.

For each check, the Results Summary pane contains the check attributes, listed in
columns:

Attribute Description

Family Group to which the check belongs. For
instance, if you choose the grouping
Checks by File/Function, this column
contains the name of the file and function
containing the check.

 Results Summary

10-59

Attribute Description

ID Unique identification number of the
check. In the default view on the Results
Summary pane, the checks appear sorted
by this number.

Type Check color
Category Category of the check. For more

information on the checks covered by a
category, see the check reference pages.

Check Description of the error
Information For run-time errors, this attribute indicates

whether the check is related to path or
bounded input values. For coding rule
violations, this attribute indicates whether
the rule is Required.

File File containing the instruction where the
check occurs

Class Class containing the instruction where the
check occurs. If the check is not inside a
class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where
the check occurs. If the function is a
method of a class, it appears in the format
class_name::function_name.

Line Line number of the instruction where the
check occurs.

Col Column number of the instruction where
the check occurs. The column number is the
number of characters from the beginning of
the line.

10 Reviewing Verification Results

10-60

Attribute Description

% Percentage of checks that are not orange.
This column is most useful when you
choose the grouping Checks by File/
Function. The entry in this column
against a file or function indicates the
percentage of checks in the file or function
that are not orange.

Classification Level of severity you have assigned to the
check. The possible levels are:

• Unset

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to the
check. The possible statuses are:

• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Other

• Restart with different options

Justified Check boxes showing whether you have
justified the checks

Comments Comments you have entered about the
check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

 Results Summary

10-61

• Navigate through the checks. For more information, see “Assign Review Status to
Result”.

• Organize your check review using filters on the columns. For more information, see
“Organize Results Using Filters and Groups”.

10 Reviewing Verification Results

10-62

Source

In this section...

“Source” on page 10-62
“Dashboard” on page 10-70

Source

The Source pane shows the source code with colored checks highlighted.

 Source

10-63

On the Source pane, you can:

10 Reviewing Verification Results

10-64

• Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides
options to examine your code. For example, right-click the global variable
PowerLevel:

Use the following options to examine and navigate through your code:

• Search "PowerLevel" in Current Source — List occurrences of the string
within the current source file in the Search pane.

• Search "PowerLevel" in All Source Files — List occurrences of the string
within all source files in the Search pane.

 View Variable Range

10-65

• Search For All References — List all references in the Search pane. The
software supports this feature for global and local variables, functions, types, and
classes.

• Go to Definition — Go to the line of code that contains the definition of
PowerLevel. The software supports this feature for global and local variables,
functions, types, and classes.

• Go To Line — Open the Go to line dialog box. If you specify a line number and
click Enter, the software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

• View Variable Range

Place your cursor over a check to view range information for variables, operands,
function parameters, and return values. For more information, see “Use Range
Information in Results Manager”

• Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays M icons that identify source code lines with macros.

10 Reviewing Verification Results

10-66

When you click a line with this icon, the software displays the contents of macros on
that line.

 Manage Multiple Files

10-67

To display the normal source code again, click the line away from the shaded region,
for example, on the arrow icon.

To display or hide the content of all macros:

1 Right-click any point within the source code view.
2 From the context menu, select either Expand All Macros or Collapse All

Macros.

Note: The Check Details pane also allows you to view the contents of a macro if the
check you select lies within a macro.

• Manage Multiple Files

You can view multiple source files in the Source pane as separate tabs.

10 Reviewing Verification Results

10-68

On the Source pane toolbar, right-click a view.

From the Source pane context menu, you can:

• Close – Close the currently selected source file. You can also use the χ button to
close the tabs.

• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source pane horizontally to display the

selected source file below another file.

 View Code Block

10-69

• New Vertical Group – Split the Source pane vertically to display the selected
source file side-by-side with another file.

• Floating – Display the current source file in a new window, outside the Source
pane.

• View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing
brace.

10 Reviewing Verification Results

10-70

Dashboard

The Dashboard tab on the Source pane provides statistics on the verification results in
a graphical format.

In the Results Manager perspective, this tab is displayed by default when you open a
results file with extension .pscp. On this tab, you can view four graphs and charts:

• Code covered by verification

This column graph displays:

• The percentage of procedures covered by verification. You can see this percentage
in the Procedure column.

 Code covered by verification

10-71

• The percentage of elementary operations in executable procedures covered by
verification. You can see this percentage in the Code operation column.

These percentages provide a measure of:

• Code coverage achieved by the Polyspace verification.
• Validity of your Polyspace configuration.

Click the column graph to open the Code covered by verification window.

10 Reviewing Verification Results

10-72

 Check distribution

10-73

This window contains:

• The fraction of procedures that are unreachable in the format, Number of
unreachable procedures/Total number of procedures.

• A list of unreachable procedures along with the file and line number where they
are defined. Selecting a procedure displays the procedure definition in the Source
pane.

A low coverage can indicate an early red check or missing function call. Consider the
following code:

1 void coverage_eg(void)

2 {

3 int x;

4

5 x = 1 / x;

6 x = x + 1;

7 propagate();

8 }

Verification generates only one red NIVL check, for a read operation on the variable x
— see line 5. The software does not display checks for these elementary operations:

• On line 5, for the division operation, a ZDV check.
• On line 5, for the division operation, an OVFL check.
• On line 6, for the addition operation, an OVFL check.
• On line 6, for another read operation on x, an NIVL check.

As the software displays only one out of the five operation checks for the code, the
percentage of elementary operations covered is 1/5 or 20%. The software does not take
into account the checks inside the unreachable function propagate().

• Check distribution

This pie chart displays the number of checks of each color. For a description of the
check colors, see “Check Colors”.

Using this pie chart, you can obtain an estimate of:

• The number of checks to review.
• The selectivity of your verification — the fraction of checks that are not orange.

10 Reviewing Verification Results

10-74

• Top 5 orange sources

An orange source is a variable or function that leads to an orange check. This column
graph displays five orange sources affecting the most number of checks.

Each column represents an orange source. The columns are arranged in the order of
number of checks affected. The height of the column indicates the number of checks
affected by the corresponding orange source. Place your cursor on a column to open a
tooltip showing the source name and the number of checks affected by the source.

Using this chart, you can:

• View the five sources affecting the most number of checks. Select a column to view
further details of the corresponding orange source in the Orange Sources pane.

• Prioritize your review of orange checks. If there are sources affecting a large
number of orange checks, using this chart can quickly improve the selectivity of
your verification.

 Top 5 coding rule violations

10-75

• Top 5 coding rule violations

This column graph displays the five most violated coding rules. Each column
represents a coding rule and is indexed by the rule number. The height of the column
indicates the number of violations of the coding rule represented by that column.

For a list of supported coding rules, see “Supported MISRA C:2004 Rules”, “Supported
MISRA C++ Coding Rules” and “Supported JSF C++ Coding Rules”.

10 Reviewing Verification Results

10-76

Check Details

On the Results Summary pane, if you click a check, you see additional information on
the Check Details pane.

Error Call Graph

Click the Show error call graph icon, in the Check Details pane toolbar to
display the call sequence that leads to the code associated with a check.

For more information, see “View Call Sequence for Checks”.

 Check Review

10-77

Check Review

Check Review

When reviewing checks, use the Check Review tab to assign a Classification and
Status to each check. You can also enter comments to describe the results of your review.
This action helps you track the progress of your review and avoid reviewing the same
check twice.

10 Reviewing Verification Results

10-78

For more information, see “Assign Review Status to Result”.

 Call Hierarchy

10-79

Call Hierarchy

The Call Hierarchy pane displays the call tree of functions in the source code.

For each function,foo, the Call Hierarchy pane lists the functions and tasks that
call foo (callers) and those called by foo (callees). The callers are indicated by

(functions), or (tasks). The callees are indicated by (functions) or (tasks). The
Call Hierarchy pane lists both direct function calls and indirect calls through function
pointers.

For more information, see “View Call Tree for Functions”.

In the following example, the Call Hierarchy pane displays the function,
orderregulate, in the file, tasks1.c. It also displays the callers and the callees of
orderregulate.

10 Reviewing Verification Results

10-80

 Show/Hide Callers and Callees

10-81

Depending on the name, the corresponding line number in the Call Hierarchy pane
refers to a different line in the source code:

• For the function name, the line number refers to the beginning of the function
definition. In the preceding example, the definition of tasks1.orderregulate
begins on line 35.

• For a callee name, the number refers to the line where the callee is called. In
the preceding example, callee, tasks2.Increase_PowerLevel, is called by
tasks1.orderregulate on line 38.

• For a caller name, the number refers to the line where the caller calls the
function. In the preceding example, caller, tasks2.Command_Ordering, calls
tasks1.orderregulate on line 50.

Tip Select a caller or callee name to navigate to the function call in the source code.

You can perform the following actions from the Call Hierarchy pane:

• Show/Hide Callers and Callees

Customize the view to display callers only or callees only. Show or hide callers and
callees by clicking this button

• Go to Caller/Callee Definition

Go directly to the definition of a caller or callee in the source code. Right-click the
name of the caller or callee and select Go to definition. For more information, see
“Navigate Call Tree”.

10 Reviewing Verification Results

10-82

Variable Access
The Variable Access pane displays global variables. For each global variable, the pane
lists all functions and tasks performing read/write access on the variables, along with
their attributes, such as values, read/write accesses and shared usage.

For each variable and each read/write access, the Variable Access pane contains the
relevant attributes. For the variables, the various attributes are listed in this table.

Attribute Description

Variables Name of Variable, File_Name.
Variable_Name

File_Name: Name of file where variable is
declared

Values Value (or range of values) of variable
Reads Number of times the variable is read
Writes Number of times the variable is written
Written by task Name of tasks writing on variable using aliases,

t1,t2,t3

Tip To see the full names for aliases, right-click
anywhere on the Variable Access pane and
select Show Legend.

 Variable Access

10-83

Attribute Description

Read by task Name of tasks reading variable using aliases,
t1,t2,t3

Protection Whether shared variable is protected from
concurrent access

(Filled only when Usage column has entry,
Shared)

The possible entries in this column are:

• Critical Section: If variable is accessed
in critical section of code

• Temporal Exclusion: If variable is
accessed in mutually exclusive tasks

For more details on these entries, see:

• “Prevent Concurrent Access Using
Temporally Exclusive Tasks”

• “Prevent Concurrent Access Using Critical
Sections”

Usage Shared, if variable is shared between tasks;
otherwise, blank

Line Line number of variable declaration
Col Column number (number of characters from

beginning of line) of variable declaration

File Source file containing variable declaration
Data Type Data type of variable (C/C++ data types or

structures/classes)

Double-click a variable name to view read/write access operations on the variable. The
arrowhead symbols and in the Variable Access pane indicate functions performing
read and write access respectively on the global variable. Likewise, tasks performing

read and write access are indicated by the symbols and respectively. For further
information on tasks, see “Entry points (C/C++)”.

10 Reviewing Verification Results

10-84

For access operations on the variables, the various attributes described in the pane are
listed in this table.

Attribute Description

Variables Names of function (or task) performing read/
write access on the variable, File_Name.
Function_Name

File_Name: Name of file containing function (or
task) definition

Values Value or range of values of variable in the
function or task performing read/write access

Written by task Only for tasks: Name of task performing write
access on variable

Read by task Only for tasks: Name of task performing read
access on variable

Line Line number where function or task accesses
variable

Col Column number where function or task accesses
variable

File Source file containing access operation on
variable

For example, consider the global variable, SHR2:

 Variable Access

10-85

The function, Tserver, in the file, tasks1.c, performs two write operations
on SHR2. This is indicated in the Variable Access pane by the two instances of
tasks1.Tserver() under the variable, SHR2, marked by . Likewise, the two write
accesses by tasks, server1 and server2, are also listed under SHR2 and marked by .

The following color scheme is used for variables that appear on the Variable Access
pane:

• Gray: global variable that is declared but never used. When determining whether a
variable is used, the software considers the entire source code, both reachable and
unreachable.

• Black: global variable that is used in one task. When determining whether a variable
is shared, the software considers all operations, both reachable and unreachable. In
code that is not intended for multitasking, the global variables are either black or
gray.

• Orange: global variable that is used in more than one task. At least one operation on
the variable is not protected from interruption by operations in other tasks.

10 Reviewing Verification Results

10-86

• Green: global variable that is used in more than one task. All operations on the
variable are protected from interruption through critical sections or temporal
exclusion. The calls to functions beginning and ending a critical section must be
reachable.

In addition, a read or write operation on a global variable appears gray if it occurs in
unreachable code.

The information about global variables and read/write access operations obtained from
the Variable Access pane is called the data dictionary. For more information on the
data dictionary, see “Dataflow Verification”.

You can also perform the following actions from the Variable Access pane.

• View Access Graph

View the access operations on a global variable in graphical format using the

Variable Access pane. Select the global variable and click . For more
information, see “View Access Graph for Global Variables”.

Here is an example of an access graph:

• View Structured Variables

For structured variables, view the individual fields from the Variable Access pane.
For example, for the structure, SHR4, the pane displays the fields, SHR4.A and
SHR4.B, and the functions performing read/write access on them.

 View Access Through Pointers

10-87

• View Access Through Pointers

View access operations on global variables performed indirectly through pointers.

If a read/write access on a variable is performed through pointers, then the access is

marked by (read) or (write).

For instance, in the file, initialisations.c, the variable, arr, is declared as a
pointer to the array, tab.

In the file main.c, tab is both read and written in the function, interpolation(),
through the pointer variable, arr. This operation is shown in the Variable Access

pane by the and icons respectively.

10 Reviewing Verification Results

10-88

• Show/Hide Callers and Callees

Customize the Variable Access pane to show only the shared variables. On the

Variable Access pane toolbar, click the Non-Shared Variables button to show or
hide non-shared variables.

• Hide Access in Unreachable Code

Hide read/write access occurring in dead code by clicking the filter button .
• Limitations

You cannot see an addressing operation on a global variable or object (in C++) as
a read/write operation in the Variable Access pane. For example, consider the
following C++ code:

class C0

{

public:

 C0() {}

 int get_flag()

 {

 volatile int rd;

 return rd;

 }

 ~C0() {}

private:

 int a; /* Never read/written */

};

 Limitations

10-89

C0 c0; /* c0 is unreachable */

int main()

{

 if (c0.get_flag()) /* Uses address of the method */

 {

 int *ptr = take_addr_of_x();

 return 1;

 }

 else

 return 0;

}

You do not see the method call c0.get_flag() in the Variable Access pane
because the call is an addressing operation on the method belonging to the object c0.

10 Reviewing Verification Results

10-90

Red Checks

Red checks indicate code that always causes a run-time error.

Run-time errors highlighted by Polyspace Code Prover verification are determined with
reference to the language standard. Though some of the errors can be acceptable for a
particular environment, they are unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The type cannot store the
result of the computation 127+1=128. However, depending on the environment a “wrap
around” might be performed to give a result of -128. This result is mathematically
incorrect, and could have serious consequences if, for example, the computation
represents the altitude of a plane.

By default, Polyspace verification does not make assumptions about the way you use a
variable. A deviation from the recommendations of the language standard is treated as
a red error. Most of the errors you find are easy to fix once the software identifies them.
Polyspace verification identifies errors regardless of their consequence, or how difficult
they may be to fix.

Polyspace verification identifies two kinds of red checks:

• Red errors which are compiler-dependant in a specific way. A Polyspace option may be
used to allow compiler specific behavior .

Examples in C include options to deal with constant overflows, shift operation on
negative values, and so on.

• You must fix all other red errors. They are code defects.

 Gray Checks

10-91

Gray Checks

In this section...

“Gray Checks” on page 10-91
“Common Causes for Gray Checks” on page 10-91

Gray Checks

Gray checks denote unreachable sections of code. Unreachable code can arise in the
following situations:

• Unreachable code resulting from bugs in the source code
• Unreachable code resulting from a particular configuration
• Defensive code that is never reached
• Libraries that are not used to their full extent in a particular context

Common Causes for Gray Checks

• A lack of parenthesis and operand priorities in the testing clause changes the
meaning significantly.

Consider a line of code such as:

IF NOT a AND b OR c AND d

For this line of code, misplaced parentheses can severely influence how the
line behaves. For instance, the following placement of parentheses can lead to
significantly different test conditions:

IF NOT (a AND b OR c AND d)

IF (NOT (a) AND b) OR (c AND d))

IF NOT (a AND (b OR c) AND d)

• The test variable takes values that never satisfy the condition tested by an if
statement.

• The wrong variable is tested in the if statement.

10 Reviewing Verification Results

10-92

• The test variable should be local to a file but is instead local to a function.
• The data type of the test variable leads to a comparison that is always false.

 Orange Checks

10-93

Orange Checks

Orange checks indicates that the code cannot be proved to either have or not have a run-
time error.

The number of orange checks you need to review is determined by several factors,
including:

• The stage of the development process
• Your quality goals

You can also take steps to reduce the number of orange checks. For more information, see
“Orange Check Management”.

Orange Check Identified as Potential Errors

The software identifies a subset of orange checks that are most likely run-time errors.
If you choose the review methodology First checks to review, you can view this
subset. These orange checks are related to path and bounded input values. For more
information, see:

• “Path” on page 10-93
• “Bounded Input Values” on page 10-94
• “Unbounded Input Values” on page 10-95

Here, input values refer to values that are external to the application. Examples include:

• Inputs to functions called by generated main. For more information on functions
called by generated main, see “Functions to call (C)”.

• Global and volatile variables.
• Data returned by a stubbed function. The data can be the value returned by the

function or a function parameter modified through a pointer.

Path

The following example shows a path-related orange check that might be identified as a
potential run-time error.

Consider the following code.

10 Reviewing Verification Results

10-94

void path(int x) {

 int result;

 result = 1 / (x - 10);

 // Orange Division by Zero

 }

void main() {

 path(1);

 path(10);

 }

The software identifies the orange ZDV check as a potential error. The Check Details
pane indicates the potential error:
...

Warning: scalar division by zero may occur

...

This Division by Zero check on result=1/(x-10) is orange because:

• path(1) does not cause a division by zero error.
• path(10) causes a division by zero error.

Polyspace indicates the definite division by zero error through a Non-terminating call
error on path(10). If you select the red check on path(10), the Check Details pane
provides the following information:
NTC Reason for the NTC: {path.x=10)

Bounded Input Values

Most input values can be bounded by data range specifications (DRS). The following
example shows an orange check related to bounded input values that might be identified
as a potential run-time error.

int tab[10];

extern int val;

// You specify that val is in [5..10]

void assignElement(int index) {

 int result;

 result = tab[index];

 // Orange Out of bounds array index

 }

void main(void) {

 Orange Checks

10-95

 assignElement(val);

}

If you specify a PERMANENT data range of 5 to 10 for the variable val, verification
generates an orange Out of bounds array index check on tab[index]. The Check
Details pane provides information about the potential error:
Warning: array index may be outside bounds: [0..9]

This check may be an issue related to bounded input values

Verifying DRS on extern variable val may remove this orange.

 array size: 10

 array index value: [5 .. 10]

Unbounded Input Values

The following example shows an orange check related to unbounded input values that
might be identified as a potential run-time error:

int tab[10];

extern int val;

void assignElement(int index) {

 int result;

 result = tab[index];

 // Orange Out of bounds array index

 }

void main(void) {

 assignElement(val);

}

The verification generates an orange Out of bounds array index check on
tab[index]. The Check Details pane provides information about the potential error:
Warning: array index may be outside bounds: [0..9]

This check may be an issue related to unbounded input values

If appropriate, applying DRS to extern variable val may remove this orange.

 array size: 10

 array index value: [-2
31
 .. 2

31
-1]

10 Reviewing Verification Results

10-96

Color Sequence of Checks

The following examples show how the checks obtained in a verification can depend on
each other.

• The following example shows what happens after a red check:
void red(void)

{

int x;

x = 1 / x ;

x = x + 1;

}

When Polyspace verification reaches the division by x, x has not yet been initialized.
Therefore, the software generates a red Non-initialized local variable check
for x.

Execution paths beyond division by x are stopped. No checks are generated for the
statement x = x + 1;.

• The following example shows how a green check can propagate out of an orange
check.
extern int Read_An_Input(void);

void propagate(void)

{

 int x;

 int y[100];

 x = Read_An_Input();

 y[x] = 0;

 y[x] = 0;

}

In this function:

• x is assigned the return value of Read_An_Input. After this assignment, the
software estimates the range of x as [-2^31, 2^31-1].

• The first y[x]=0; shows an Out of bounds array index error because x can
have negative values.

• After the first y[x]=0;, from the size of y, the software estimates x to be in the
range [0,99].

• The second y[x]=0; shows a green check because x lies in the range [0,99].
• The following example shows why a check should be reviewed in the context of the

code.

 Color Sequence of Checks

10-97

Consider an orange Non-initialized local variable on x in the following
statement:

if (x > 101);

You might conclude that the verification continues after this statement because the
check is orange. However, consider the same statement in the context of the code:

extern int read_an_input(void);

void main(void)

{

 int x;

 if (read_an_input()) x = 100;

 if (x > 101)

 //Orange Non-initialised local variable

 {x++; }

}

The correct interpretation of this verification result is that if x is initialized, the only
possible value for it is 100. Therefore, x can never be both initialized and greater than
101, so the rest of the code is gray. This conclusion is different from what you expect
considering the line in isolation.

• The following example shows how a red error can hide a bug which occurred on
previous lines.

%% file1.c %%

void f(int);

int read_an_input(void);

int main() {

 int x,old_x;

 x = read_an_input();

 old_x = x;

 if (x<0 || x>10)

 return 1;

 f(x);

 x = 1 / old_x;

 // Red Division by Zero

 return 0;

}

%% file2.c %%

#include <math.h>

void f(int a) {

 int tmp;

 tmp = sqrt(0-a);

}

10 Reviewing Verification Results

10-98

A red check occurs on x=1/old_x; in file1.c because of the following sequence of
steps during verification:

1 When x is assigned to old_x in file1.c, the verification assumes that x and
old_x have the full range of an integer, that is [-2^31 , 2^31-1].

2 Following the if clause in file1.c, x is in [0,10]. Because x and old_x are
equal, Polyspace considers that old_x is in [0,10] as well.

3 When x is passed to f in file1.c, the only possible value that x can have is 0.
All other values lead to a run-time exception in file2.c, that is tmp = sqrt(0–
a);.

4 A red error occurs on x=1/old_x; in file1.c because the software assumes
old_x to be 0 as well.

• The following example shows how skipping intermediate code while tracing the cause
of a check might lead to erroneous conclusions.

Consider the following example:

extern int read_an_input(void);

void main(void)

{

 int x;

 int y[100];

 x = read_an_input();

 y[x] = 0;

 y[x-1] = (1 / x) + x ;

 if (x == 0)

 y[x] = 1;

}

 From the gray check, you can trace backwards as follows:

• The line y[x]=1; is unreachable.
• Therefore, the test to assess whether x = 0 is always false.
• The return value of read_an_input() is never equal to 0.

However, read_an_input can return any value in the full integer range, so this is
not the correct explanation.

Instead, consider the execution path leading to the gray code:

 Color Sequence of Checks

10-99

• The orange Out of bounds array index check on y[x]=0; means that
subsequent lines deal with x in [0,99].

• The orange Division by Zerocheck on the division by x means that x cannot be
equal to 0 on the subsequent lines. Therefore, following that line, x is in [1,99].

• Therefore, x is never equal to 0 in the if condition. Also, the array access through
y[x-1] shows a green check.

10 Reviewing Verification Results

10-100

Defects from Code Integration

When you integrate sections of code, the number of checks can change from when the
sections were verified in isolation. The following examples show this behavior:

• A function receives two unbounded integers. When verifying the function in isolation,
the software assumes that inputs are well-behaved. The software can check for the
presence of an overflow only during integration.

• A function takes a structure as an input parameter. When verifying the function in
isolation, the software assumes that the structure is well initialized. Consequentially,
the software displays a green Non-initialized local variable check at the
first read access to a field. During integration, this check can turn orange if a context
does not initialize these fields.

If you have already performed an exhaustive review for the individual sections, during
integration, review only checks that have turned from green to another color .

 Defects in Unprotected Shared Data

10-101

Defects in Unprotected Shared Data

Based on the list of entry points in a multi-task application, Polyspace verification
identifies a list of shared data and provides some information about each entry:

• The data type.
• A list of read and write access to the data through functions and entry points.
• The type of any implemented protection against concurrent access.

You can specify entry points through the Multitasking tab on the Configuration pane
in the Project Manager perspective. For information on command-line specification, see
“Entry points (C/C++)”.

A shared data item is a global data item that is read from or written to by two or more
tasks. You can view information on shared data on the Variable Access pane. For more
information, see “Variable Access”.

A shared variable is protected from concurrent access when one task cannot access it
while another task is in the process of doing so. A defect can arise from unprotected
concurrent access on variables. To prevent defects arising from concurrent access, protect
the variables by placing them in a critical section or temporally exclusive tasks. For more
information, see “Critical section details (C/C++)” and “Temporally exclusive tasks (C/C+
+)”.

10 Reviewing Verification Results

10-102

Defects Related to Pointers

In this section...

“Messages on Dereferences” on page 10-102
“Variables in Structures (C)” on page 10-103

For a check related to a pointer variable, on separate lines in the tooltip message, the
software displays:

• The pointer name, data type of the variable, and size of the data type in bits.
• A comment that indicates whether the pointer is null, is not null, or may be

null. See also “Messages on Dereferences”.
• The number of bytes that the pointer accesses, the offset position of the pointer in the

allocated buffer, and the size of this buffer in bytes.
• A comment that indicates whether the pointer may point to dynamically allocated

memory.
• The names of the variables at which the pointer may point. See also “Variables in

Structures (C)”.

For a check related to a function pointer, the software displays:

• The pointer name.
• A comment that indicates whether the pointer is null, is not null, or may be

null.
• The names of the functions that the pointer may point to, and a comment indicating

whether the functions are well or badly typed (whether the number or types of
arguments in a function call are compatible with the function definition).

Messages on Dereferences

Tooltip messages on dereferences give information about the expression that is
dereferenced.

Consider the following code:

int *p = (int*) malloc (sizeof(int) * 20);

p[10] = 0;

 Defects Related to Pointers

10-103

In the verification results, the tooltip on “[” displays information about the expression
that is dereferenced.

p[10] refers to the contents of address p + 10 * sizeof(int), so the tooltip message
displays the following:

• The dereferenced pointer is at offset 40.

Explanation: p has offset 0, so p+10 has offset 10 * sizeof(int)=40.
• The dereferenced pointer is not null.

Explanation: p is null, but p+10 is not null (0+40 ≠ 0).

The software reports an orange dereference check (IDP) on p[10] because malloc may
have put NULL into p. In that case, p + 10 * sizeof(int) is not null, but it is not
properly allocated.

Variables in Structures (C)

The information that the software displays for structure variables depends on whether
you specify the option “Enable pointer arithmetic across fields (C)”.

Consider the following code:

Struct { int x; int y; int z; } s ;

int *p = &s.y ;

If you do not specify the option (this is the default), then placing the cursor over p
produces the following information:

accessing 4 bytes at offset 0 in buffer of 4 bytes

10 Reviewing Verification Results

10-104

This information conforms with ANSI C, which

• Requires that &s.y points only at the field y
• Does not allow pointer arithmetic for access to other fields, for example, z

If you specify the option -allow-ptr-arith-on-struct, you are allowed to carry out
pointer arithmetic using the addresses of structure fields. In this case, placing the cursor
over p produces the following information:

accessing 4 bytes at offset 4 in buffer of 12 bytes

 Global Variables

10-105

Global Variables

Initializing Global Variables

If your application defines global variables, then the software uses the dummy function
_init_globals() to initialize the global variables. The _init_globals() function is
the first function called in the main function.

Consider the following code in the application gv_example.c.

extern int func(int); /* External function */

/* Global variables initialized in _init_globals() */

/* before the execution of main() procedure */

int garray[3] = {1, 2, 3};

/* Initialized: written in __init_globals() */

int gvar = 12;

/* Initialized: written in __init_globals() */

int main(void) {

 int i, lvar = 0;

 for (i = 0; i < 3; i++)

 lvar += func(garray[i] + gvar);

 return lvar;

}

Verification produces the following procedural entities:

In the Variables view, gv_example._init_globals represents the first write access
operation on a global variable, for example, garray. The corresponding value in the
Values column represents the value of the global variable after initialization.

10 Reviewing Verification Results

10-106

Using Global Variables

For global variables, it is not always apparent which global variables are produced or
used by a given file. Excessive use of global variables can lead to design problems, such
as:

• File APIs (or functions accessible from outside the file) without procedure parameters.
• The requirement for a formal list of variables which are produced and used, and the

theoretical ranges they can take as input and output values.

 Dataflow Verification

10-107

Dataflow Verification

You can verify dataflow in Polyspace for certification purposes. Dataflow verification is a
typical requirement in the avionic, aerospace, or transport markets.

Verify data flow for functions and global variables through the following Polyspace
results:

• Call tree (also known as call graph) for functions (and tasks). The call tree shows the
calling relationship between functions (and tasks). For more information, see “View
Call Tree for Functions”.

You can view the call tree in two ways:

• Through the Call Hierarchy pane. On this pane, you can view the branch of the
call tree containing a given function. You can also navigate the entire call tree
from this pane. For more information, see “Call Hierarchy”.

• In text format. Open the file, projectname_Call_Tree.txt, in the folder,
Polyspace-doc, in your results folder.

• Data dictionary for global variables. The data dictionary lists global variables with
their read/write access operations.

You can view the data dictionary in two ways:

• Through the Variable Access pane. On this pane, you can view global variables
and their attributes. For more information, see “Variable Access”. You can also
access a graphical representation of the call sequence for global variables using
this pane. For more information, see “View Access Graph for Global Variables”.

• In text format. Open the file, projectname_Variable_View.txt, in the folder,
Polyspace-doc, in your results folder.

10 Reviewing Verification Results

10-108

Results Folder

The Result_n folder contains the following files:

• Polyspace_release_project_name_date-time.log

— A log file associated with each verification, for example,
Polyspace_R2013b_example_project_05_17_2013-12h01.log.

• project_name.pscp — An ASCII file containing the location of the most recent
results and log. The software uses this file to open results in the Results Manager.

• drs-template.xml — A file containing the data range specifications that is
generated by Polyspace Code Prover during the compile phase.

• coding_rules_std_rules.txt — A template of coding rules. For example,
misra_rules.txt is a template of MISRA rules, generated when you specify the -
misra2 all-rules option.

• options — The list of options used for the most recent verification.
• pst_user_stubs.c — The list of functions and procedures stubbed by Polyspace

Code Prover during the compile phase.
• source_list.txt — A list of sources verified by the latest verification.

In addition, the Result_n folder contains the following subfolders:

In this section...

“ALL Subfolder” on page 10-108
“Polyspace-Doc Subfolder” on page 10-109
“Polyspace-Instrumented Subfolder” on page 10-110

ALL Subfolder

The ALL subfolder contains internal information that is used by Polyspace Code Prover to
show sources and checks.

• SRC\MACROS\ci.zip — A zip file containing expanded source files with a .ci suffix.
• _deadproc.txt — A text file of unreachable procedures.
• SRC*.[c or h] — Source code file required for the verification. The file contains

user source code and code generated by Polyspace Code Prover.

 Results Folder

10-109

Polyspace-Doc Subfolder

The Polyspace-Doc subfolder contains the following files:

• Code_Metrics.xml — A list of metrics from the most recent verification.
• CODING_RULES_STD-report.xml and CODING_RULES_STD-summary-report.xml

— Lists coding rules violated during the most recent verification. For example:

• If you specify the option Check MISRA C:2004 rules, the software generates
MISRA-report.xml and MISRA-summary-report.xml. These files list the
violated MISRA C rules.

• If you specify the option Check custom rules, the software generates Custom-
rules-report.xml and Custom-rules-summary-report.xml. These files list
the violated custom rules.

• Project_name_Call_Tree.txt — Call tree starting from entry point functions.
Each level in the tree hierarchy is denoted by |. For example, a function call two
levels away from an entry point function is denoted as:

| | - > file_name.function_name

Each row in this file contains a function name and the file, line, and column of the:

• Function call
• Function definition

• Project_name_Variable_View.txt — Data dictionary of global variables.

For each variable, the rows below the variable name contain:

• Variable reads denoted by > and writes denoted by <.
• Call tree level of reading or writing function denoted using | in the same way as in

Project_name_Call_Tree.txt

• Additional information available on the Variable Access pane. See “Variable
Access”.

• Polyspace_Macros — This .xls file contains a Generate Spreadsheet macro.
The macro collects the information contained in Project_name_Call_Tree.txt
and Project_name_Variable_View.txt. The macro then displays them in a
spreadsheet. For the macro to function, both .txt files must be in the same folder as
the .xls file.

10 Reviewing Verification Results

10-110

Polyspace-Instrumented Subfolder

When the software runs the Automatic Orange Tester (AOT) at the end of a static
verification, the software creates the Polyspace-Instrumented folder. The
Polyspace-Instrumented folder contains files associated with the configuration and
running of the Automatic Orange Tester. These files include the following:

• _testgen.tgf — A configuration file that contains your Automatic Orange Tester
preferences and variable ranges.

• reachedchecks.txt — Statistics for orange checks covered by the last run of the
Automatic Orange Tester.

• reachedchecks_dd_mm_yyyy-hhmmss.txt — Statistics for orange checks covered
by the run of the Automatic Orange Tester at the given date and time.

• TestGenerator_dd_mm_yyyy-hhmmss.out — Log file created at the given date and
time, which contains a list of failed tests as well as summary information.

• stdout.txt — Contains data from the standard output (stdout) stream generated
by your code during the last run of the Automatic Orange tester.

• stderr.txt — Contains messages from the standard error (stderr) stream
generated by your code during the last run of the Automatic Orange tester.

 Reusing Review Comments

10-111

Reusing Review Comments

After you have reviewed verification results, you can reuse your review comments for
subsequent verifications. By reusing your review comments, you can:

• Avoid reviewing the same check twice.
• Compare verification results over time.

You can directly import review comments from another set of results into the current
results. However, it is possible that your review comments do not apply to a subsequent
verification because:

• You have changed your source code so that the check is no longer present.
• You have changed your source code so that the check color has changed.
• You have already entered different review comments for the same check.

Related Examples
• “Import Review Comments from Previous Verifications”
• “View Checks and Comments Report”

10 Reviewing Verification Results

10-112

Import Review Comments from Previous Verifications

In this section...

“Import Comments from Previous Verifications” on page 10-112
“Automatically Import Comments from Last Verification” on page 10-112
“Automatically Import Comments During Command-Line Verification” on page
10-113

After you have reviewed verification results, you can reuse your review comments for
subsequent verifications.

After you import checks and comments, clicking the icon skips justified checks.
Therefore, you do not have to review checks twice.

Import Comments from Previous Verifications

1 Open your verification results in the Results Manager perspective.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the results file with extension .pscp and then click Open.

The review comments from the previous results are imported into the current
results, and the Import checks and comments report opens. For more information,
see “View Checks and Comments Report”.

Automatically Import Comments from Last Verification

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, select Automatically import comments from last

verification.
4 Click OK.

After you set this preference, for every run, the software imports review comments
from the last run.

 Import Review Comments from Previous Verifications

10-113

Automatically Import Comments During Command-Line Verification

To automatically import comments from a specific verification, use the option -import-
comments. For example:
polyspace-code-prover-nodesktop -version 1.3 -import-comments C:\PolyspaceResults\1.2

See Also
“-import-comments”

Related Examples
• “View Checks and Comments Report”

More About
• “Reusing Review Comments”

10 Reviewing Verification Results

10-114

View Checks and Comments Report
After you have reviewed verification results, you can reuse your review comments for
subsequent verifications. However, it is possible that your review comments do not apply
to a subsequent verification because:

• You have changed your source code so that the check is no longer present.
• You have changed your source code so that the check color has changed.
• You have already entered different review comments for the same check.

The Import Checks and Comments Report highlights differences between two verification
results. When you import comments from a previous verification, you can see this report.
If you have closed the report after an import, to review the report again:

1 Select Window > Show/Hide View > Import Comments Report.

The Import Checks and Comments Report opens, highlighting differences in the two
results.

2 Review the differences between the two results.

• If the check color changes, Polyspace populates the Comment field but not the
fields Classification, Status or Justified.

• If a check no longer appears in the code, Polyspace highlights only the change in
the Import Checks and Comments Report. It does not import review comments
from the previous result.

• If you have already entered different review comments for the same check,
Polyspace highlights only the change in the Import Checks and Comments
Report. It does not import review comments from the previous result.

Related Examples
• “Import Review Comments from Previous Verifications”

More About
• “Reusing Review Comments”

 Generate Report from User Interface

10-115

Generate Report from User Interface

This example shows how to generate a report from your verification results. Using
a customizable template, the report presents your results in a concise manner for
managerial review or other purposes. To generate a verification report, do one of the
following:

• Specify certain options before verification so that the software automatically
generates a report.

• Generate a report from your verification results.

Specify Report Generation Before Verification

1 In the Project Manager perspective, open your project.
2 On the Configuration pane, specify report generation options.

a Select the Reporting node.
b Select Generate report.
c Select a Report template and Output format.

The template determines the information to be placed in the report along with
how it is presented.

3 Run verification and open your results.
4 Select Reporting > Open Report
5 Navigate to the Polyspace-Doc subfolder in your results folder.

You can see the generated report in this subfolder.
6 Select the report and click OK to open them.

Generate Report After Verification

1 In the Results Manager perspective, open your verification results.
2 Select Reporting > Run Report.

The Run Report dialog box opens.
3 In the Select Reports section, select the report templates you want to use. For

example, you can select Developer and Quality.

10 Reviewing Verification Results

10-116

4 Select the Output folder in which to save the reports.
5 Select the Output format for the reports.
6 Click Run Report.

The software creates the specified reports and opens them.

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

Related Examples
• “Generate Report from Command Line”
• “Open Report”
• “Customize Report Templates”

 Generate Report from Command Line

10-117

Generate Report from Command Line

You can also run the Report Generator, with options, from the command line, for
example:

Matlab_Install\polyspace\bin\polyspace-report-generator -template

path -format type -results-dir folder_paths

For information about the available options, see the following sections.

-template path

Specify the path to a valid Report Generator template file, for example:

Matlab_Install\polyspace\toolbox\psrptgen\templates\Developer.rpt

Other supplied templates are CodingRules.rpt, Developer_WithGreenChecks.rpt,
DeveloperReview.rpt, and Quality.rpt.

-format type

Specify the format type of the report. Use HTML, PDF, RTF, WORD, or XML. The default is
RTF.

-help or -h

Displays help information.

-output-name filename

Specify the filename for the report generated.

-results-dir folder_paths

Specify the paths to the folders that contain your verification results.

You can generate a single report for multiple verifications by specifying folder_paths
as follows:

10 Reviewing Verification Results

10-118

"folder1, folder2, folder3,..., folderN"

where folder1, folder2, ... are the file paths to the folders that contain the
results of your verifications (normal or unit-by-unit). For example,

"C:\Results1,C:\Recent\results,C:\Old"

If you do not specify a folder path, the software uses verification results from the current
folder.

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

Related Examples
• “Generate Report from User Interface”
• “Open Report”
• “Customize Report Templates”

 Open Report

10-119

Open Report

This example shows how to open a verification report. Before you open the report, you
must have a generated report. For more information, see “Generate Report from User
Interface”.

1 Open your verification results.
2 Select Reporting > Open Report, which opens the Open Report dialog box.
3 Navigate to the folder that contains your report.

Unless you specify an output folder explicitly during report generation, the
generated report appears in the Polyspace-Doc subfolder in your results folder.

4 Select the report and click OK.

10 Reviewing Verification Results

10-120

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

Related Examples
• “Generate Report from User Interface”
• “Generate Report from Command Line”
• “Customize Report Templates”

 Customize Report Templates

10-121

Customize Report Templates

This example shows how to customize the templates that you use for report generation.
To customize the templates, you must have MATLAB Report Generator™ software
installed on your system.

In this section...

“Create Custom Template” on page 10-121
“Apply Global Filters in Template” on page 10-121
“Override Global Filters” on page 10-123
“Use Custom Template” on page 10-124

Create Custom Template

If you have MATLAB Report Generator software on your system:

1 Open the Report Explorer from the MATLAB command prompt:

report

2 Select File > Open to open the template that you want to customize.
3 Navigate to Matlab_Install/polyspace/toolbox/psrptgen/templates

where Matlab_Install is the MATLAB installation folder. Use the matlabroot
command to find the folder location.

4 Modify the template using the options on the Report Options pane.
5 Save the modified template as a .rpt file.

Apply Global Filters in Template

1 In the Report Explorer, open the template that you want to customize. For instance,
Developer.rpt.

2 On the Name pane, under the Polyspace node, select Report Customization
(Filtering).

3 Drag this component above the Title Page component that is located under the
Report-Developer.rpt node.

10 Reviewing Verification Results

10-122

4 On the Report Customization (Filtering) pane in the right side of the Report
Explorer, specify your filters. For example:

• To include Division by zero checks, under Advanced filters, in the Check
types to include field, enter ZDV.

• To exclude Division by zero checks, under Advanced filters, in the Check
types to include field, enter the regular expression ^(?!ZDV).*.

• To include the file main.c, under Advanced filters, in the Files to include
field, enter main.c.

• To exclude the file main.c, under Advanced filters, in the Files to include
field, enter the regular expression ^(?!main.c).*.

In each text box, specify one filter per line.

For more information, see:

• “Check Acronyms”

 Customize Report Templates

10-123

• “Regular Expressions”

Override Global Filters

You can override some of the global filters using the Run-time Check Details Ordered
by Color/File component. For example, you can have a report chapter that contains NIV
checks even though NIV checks are excluded by the global filters.

1 Select the Run-time Check Details Ordered by Color/File component.

2 On the right of the dialog box, select the Override Global Report filter check box.
3 Specify your filters for this component. For example, in the Check types to include

field, enter NIV.
4 Save the template.

For more information on the components available for customizing report, see “Code
Verification” in the Simulink Report Generator documentation.

10 Reviewing Verification Results

10-124

Use Custom Template

1 Open your results in the Polyspace Code Prover Results Manager.
2 Select Reporting > Run Report.
3 Click Browse.
4 Navigate to the location where you saved your template .rpt file.
5 Select the file and click OK. Under Select Reports, you see your template.
6 Select the template and click Run Report.

See Also
“Generate report (C/C++)” | “Report template (C/C++)” | “Output format (C/C++)”

Related Examples
• “Generate Report from User Interface”
• “Generate Report from Command Line”
• “Open Report”

11

Managing Orange Checks

• “Sources of Orange Checks” on page 11-2
• “Do I Have Too Many Orange Checks?” on page 11-5
• “Improve Verification Precision” on page 11-9
• “Provide Context for Verification” on page 11-10
• “Follow Coding Rules” on page 11-12
• “Review Orange Check” on page 11-13
• “Organize Check Review” on page 11-15
• “Review Top Sources of Orange Checks” on page 11-17
• “Identify Function Call Causing Orange Check” on page 11-20
• “Test Orange Checks for Run-Time Errors” on page 11-23
• “Limitations of Automatic Orange Tester” on page 11-26

11 Managing Orange Checks

11-2

Sources of Orange Checks

In this section...

“When Orange Checks Occur” on page 11-2
“Why Review Orange Checks” on page 11-2
“How to Review Orange Checks” on page 11-3
“How to Reduce Orange Checks” on page 11-3

When Orange Checks Occur

An orange check indicates that Polyspace detects a possible run-time error but cannot
prove it. A check on an operation appears orange if both conditions are true:

First condition Second condition Example

The operation occurs
multiple times on an
execution path or on
multiple execution paths.

During static verification,
the operation fails only a
fraction of times or only on a
fraction of paths.

The operation occurs in:

• A loop with more than
one iterations.

• A function that is called
more than once.

The operation involves
a variable that can take
multiple values.

During static verification,
the operation fails only for a
fraction of values.

The operation involves a
volatile variable.

During static verification, Polyspace can consider more execution paths than the
execution paths that occur during run time. If an operation fails on a subset of paths,
Polyspace cannot determine if that subset actually occurs during run time. Therefore,
instead of a red check, it produces an orange check on the operation.

Why Review Orange Checks

Considering a superset of actual execution paths is a sound approximation because
Polyspace does not lose information. If an operation contains a run-time error, Polyspace
does not produce a green check on the operation. If Polyspace cannot prove the run-
time error because of approximations, it produces an orange check. Therefore, you must
review orange checks.

 Sources of Orange Checks

11-3

Examples of Polyspace approximations include:

• Approximating the range of a variable at a certain point in the execution path. For
instance, Polyspace can approximate the range {-1} U [0,10] of a float variable
by [-1,10].

• Approximating the interleaving of instructions in multitasking code. For instance,
even if certain instructions in a pair of tasks cannot interrupt each other, Polyspace
verification might not take that into account.

How to Review Orange Checks

To ensure that an operation does not fail during run time:

1 Determine if the execution paths on which the operation fails can actually occur.

For more information, see “Review Orange Check”.
2 If any of the execution paths can occur, fix the cause of the failure.
3 If the execution paths cannot occur, enter a comment in your Polyspace result or

source code, describing why they cannot occur. For more information on:

• Entering comments in results, see “Assign Review Status to Result”.
• Entering comments in code, see “Comment Code for Known Defects”.

In a later verification, you can import these comments into your results. Then, if the
orange check persists in the later verification, you do not have to review it again. For
more information, see “Import Review Comments from Previous Verifications”.

How to Reduce Orange Checks

Polyspace performs approximations because of one of the following.

• Your code does not contain complete information about run-time execution. For
example, your code is partially developed or contains variables whose values are
known only at run time.

If you want fewer orange checks, provide the information that Polyspace requires. For
more information, see “Provide Context for Verification”.

• Your code is very complex. For example, there can be multiple type conversions or
multiple goto statements.

11 Managing Orange Checks

11-4

If you want fewer orange checks, reduce the complexity of your code and follow
recommended coding practices. For more information, see “Follow Coding Rules”.

• Polyspace must complete the verification in reasonable time and use reasonable
computing resources.

If you want fewer orange checks, improve the verification precision. But higher
precision also increases verification time. For more information, see “Improve
Verification Precision”.

 Do I Have Too Many Orange Checks?

11-5

Do I Have Too Many Orange Checks?

Polyspace checks every operation in your code for certain run-time errors. Therefore,
you can have several orange checks in your verification results. To avoid spending
unreasonable time on an orange check review, you must develop an efficient review
process.

Depending on your stage of software development and quality goals, you can choose to:

• Review red checks only.
• Review all red checks and critical orange checks.
• Review all red checks and all orange checks.

To see only red and critical orange checks, on the Results Summary pane, select Show
> Critical checks.

In this section...

“Software Development Stage” on page 11-5
“Quality Goals” on page 11-7

Software Development Stage

Development Stage Situation Review Process

Initial stage or unit
development stage

In initial stages of
development, you can have
partially developed code or
want to verify each source
file independently. In that
case, it is possible that:

• You have not defined all
your functions and class
methods.

• You do not have a main
function

Because of insufficient
information in the

In the initial stages of
development, review all
red checks. For orange
checks, depending on your
requirements, do one of the
following:

• You want your partially
developed code to be free
of errors independent of
the remaining code. For
instance, you want your
functions to not cause
run-time errors for any
input.

11 Managing Orange Checks

11-6

Development Stage Situation Review Process

code, Polyspace makes
assumptions that result
in many orange checks.
For instance, if you use
the default configuration,
Polyspace assumes full
range for inputs of functions
that are not called in the
code.

If so, review orange
checks at this stage.

• You might want your
partially developed code
to be free of errors only
in the context of the
remaining code.

If so, do one of the
following:

• Ignore orange checks
at this stage.

• Provide the context
and then review
orange checks. For
instance, you can
provide stubs for
undefined functions
to emulate them more
accurately.

For more information,
see “Provide Context
for Verification”.

Later stage or integration
stage

In later stages of
development, you have
provided all your source
files. However, it is possible
that your code does not
contain all information
required for verification. For
example, you have variables
whose values are known
only at run time.

Depending on the time you
want to spend, do one of the
following:

• Review red checks only.
• Review red and critical

orange checks.

 Do I Have Too Many Orange Checks?

11-7

Development Stage Situation Review Process

Final stage • You have provided all
your source files.

• You have emulated
run-time environment
accurately through the
verification options.

Depending on the time you
want to spend, do one of the
following:

• Review red checks and
critical orange checks.

• Review red checks and all
orange checks.

For each orange check:

• If the check indicates a
run-time error, fix the
cause of the error.

• If the check indicates a
Polyspace approximation,
enter a comment in your
results or source code.

As part of your final release
process, you can have one of
these criteria:

• All red and critical orange
checks must be reviewed
and justified.

• All red and orange checks
must be reviewed and
justified.

To justify a check, assign
the Status of No action
planned or Justify with
annotations to the check.

Quality Goals

For critical applications, you must review all red and orange checks.

11 Managing Orange Checks

11-8

• If an orange check indicates a run-time error, fix the cause of the error.
• If an orange check indicates a Polyspace approximation, enter a comment in your

results or source code.

As part of your final release process, review and justify all red and orange checks. To
justify a check, assign the Status of No action planned or Justify with annotations
to the check.

For noncritical applications, you can choose whether or not to review the noncritical
orange checks.

Related Examples
• “Review Orange Check”
• “Organize Check Review”

More About
• “Sources of Orange Checks”

 Improve Verification Precision

11-9

Improve Verification Precision

This example shows how to improve the precision of your verification. Increased precision
reduces orange checks, but increases verification time.

Use the following options. The options appear on the Configuration pane under the
Precision node.

Option Purpose

“Precision level (C/C++)” Specify the verification algorithm.
• “Verification level (C)”
• “Verification level (C++)”

Specify the number of times the Polyspace
verification process runs on your source
code.

“Improve precision of interprocedural
analysis (C/C++)”

Propagate greater information about
function arguments into the called
function.

“Sensitivity context (C/C++)” If a function contains a red and green check
on the same instruction from two different
calls, display both checks instead of an
orange check.

Related Examples
• “Provide Context for Verification”
• “Follow Coding Rules”

More About
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

11 Managing Orange Checks

11-10

Provide Context for Verification

This example shows how to provide additional information about run-time execution
of your code. Sometimes, the code you provide does not contain this information. For
instance:

• You do not have a main function
• You have a function that is declared but not defined.
• You have function arguments whose values are available only at run-time.
• You have concurrently running functions that are intended for execution in a specific

sequence.

Without sufficient information, Polyspace Code Prover cannot verify the presence or
absence of run-time errors.

To provide more context for verification and reduce orange checks, use the following
methods.

Method Example

Define how the main generated by
Polyspace initializes variables and calls
functions

• “Provide Context for C Code
Verification”

• “Provide Context for C++ Code
Verification”

Define a stub for functions whose
definitions are not yet written.

“Constrain Data with Stubbing”

Define ranges for global variables and
function arguments.

“Review Top Sources of Orange Checks”

Define execution sequence for multitasking
code.

“Model Execution Sequence in Tasks”

Related Examples
• “Improve Verification Precision”
• “Follow Coding Rules”

More About
• “Sources of Orange Checks”

 Provide Context for Verification

11-11

• “Do I Have Too Many Orange Checks?”

11 Managing Orange Checks

11-12

Follow Coding Rules

This example shows how to follow coding rules that help Polyspace Code Prover prove
the presence or absence of run-time errors. If your code follows certain subsets of MISRA
coding rules, Polyspace can verify the presence or absence of run-time errors more easily.

1 Check whether your code follows the relevant subset of coding rules.

a On the Configuration pane, depending on the code, select one of the options
under the Coding Rules node.

Type of Code Option Rule Description

Handwritten C code Check MISRA C:2004 “Software Quality
Objective Subsets
(C:2004)”

Generated C code Check MISRA AC AGC “Software Quality
Objective Subsets (AC
AGC)”

Handwritten C++ code Check MISRA C++
rules

“Software Quality
Objective Subsets (C++)”

b From the option drop-down list, select SQO-subset1 or SQO-subset2.
2 Run verification and review your results.
3 Fix the coding rule violations.

More About
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

 Review Orange Check

11-13

Review Orange Check

This example shows how to identify the cause of an orange check and decide whether it
must be fixed.

1 On the Results Summary pane, select an orange check.
2 On the Check Details pane, view further information about the check.

Sometimes, this information can be sufficient to identify the cause of the orange
check.

3 If the information is not sufficient, trace the cause of the orange check.

a Identify the variable var that causes the check. For instance, for an Out of
bound array index error, var can be the array index.

b On the Source pane, place your cursor on var to see the values it can take.
Identify which value of var can cause a run-time error.

c Right-click var and select Search For All References. All instances of var
appear on the Search tab.

Alternatively, double-click var to see all instances highlighted on the Source
pane.

d Click each instance. The Source pane shows that instance of var.
e On the Source pane, place your cursor on each instance of var to see its values.
f If var is a function argument, use the Call Hierarchy pane to identify

the calling function. In the calling function, identify the variable
var_calling_func which gets copied into var. If necessary, browse through
the instances of var_calling_func.

g Find the instance where var acquires the value that can cause the run-time
error.

4 If you identify that the orange check occurs because of insufficient information
available to Polyspace, consider changing your verification options. For more
information, see “Provide Context for Verification”.

5 If you identify that the orange check represents a run-time error, write defensive
code to prevent the error. For instance, for an Out of bound array index error,
before you use the array index, check if it is greater than the array size.

6 If you identify that the orange check is caused by a value that does not occur at run
time, place a code comment with the rationale. For instance, for an Out of bound

11 Managing Orange Checks

11-14

array index error, if the array index is a function argument, write a comment
describing why the argument cannot be greater than the array size.

If your code comments are in a specific format, Polyspace can read them in a future
verification. For more information, see “Comment Code for Known Defects”.

Related Examples
• “Organize Check Review”
• “Review Top Sources of Orange Checks”
• “Test Orange Checks for Run-Time Errors”
• “Identify Function Call Causing Orange Check”

More About
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

 Organize Check Review

11-15

Organize Check Review

This example shows how to organize your check review. Try the following approach. You
can also develop your own procedure for organizing your orange check review.

1 On the Results Summary pane, select Show > Critical Checks.

This action retains only red, gray and critical orange checks.
2 Before reviewing orange checks, review red and gray checks.
3 Prioritize your orange check review by:

• Files and functions: For easier review, begin your orange check review from files
and functions with fewer orange checks.

To view the percentage of non-orange checks per file and function, on the Results
Summary pane, select Group by > File. Right-click a column header and select
%.

• Check type: Review orange checks in the following order. Checks are more
difficult to review as you go down this order.

Review Order Checks

First • “Out of bounds array index”
• “Non-initialized local variable”
• “Division by zero”
• “Shift operations”

Second • “Overflow”
• “Illegally dereferenced pointer”

Third Remaining checks

• Orange check sources: Review all orange checks caused by a single variable
or function. Orange checks often arise from variables whose values cannot be
determined from the code or functions that are not defined.

To review the top sources, view the Top 5 orange sources graph on the
Dashboard tab or the Orange Sources tab.

4 Identify the cause of each orange check. On the Results Summary pane, assign a
Classification and Status to the check. Add additional comments if necessary.

11 Managing Orange Checks

11-16

5 After you have reviewed critical orange checks, on the Results Summary pane,
select Show > All checks.

Depending on the quality level that you want, you can choose whether to review the
noncritical orange checks or not.

Related Examples
• “Review Orange Check”
• “Review Top Sources of Orange Checks”
• “Test Orange Checks for Run-Time Errors”
• “Identify Function Call Causing Orange Check”

More About
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

 Review Top Sources of Orange Checks

11-17

Review Top Sources of Orange Checks

This example shows how to provide a range for variables and function parameters whose
values are not known during static analysis. Many orange checks occur due to these
unknown values. You can view the top sources of orange checks on the Orange Sources
tab and provide ranges on this tab.

1 Select the Orange Sources tab.
2 On the Orange Sources tab, click the Add DRS button when available. The Data

Range Configuration tab opens.

In the example below, clicking the Add DRS button for random_int() opens the
Data Range Configuration tab with the node for random_int() expanded.

3 You can specify a range for the value returned by the function random_int. In the
Init Range column, replace min..max by -10..10.

11 Managing Orange Checks

11-18

In the Comment column, you can also add remarks.
4 Save the changes to a new configuration file:

a
Click .

The Save Data Range Specifications (DRS) as dialog box opens.

b Navigate to the required folder, and in the File name field, specify the name for
the new configuration file. Then click Save.

5 In the Project Manager perspective, use the Configuration > Code Prover
Verification > Inputs & Stubbing > Variable/function range setup field to
specify the new DRS configuration file.

6 Rerun the verification. Depending on the data range you specified, the software can
replace the orange checks for the source random_int() with a green check.

Related Examples
• “Specify Data Ranges Using Existing Template”
• “Review Orange Check”
• “Organize Check Review”
• “Test Orange Checks for Run-Time Errors”

 Review Top Sources of Orange Checks

11-19

• “Identify Function Call Causing Orange Check”

More About
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

11 Managing Orange Checks

11-20

Identify Function Call Causing Orange Check

This example shows how to find the function call that causes an orange check in the
function body. If a function is called multiple times, an orange check can appear on
an operation in the function body because different calls cause different colors on the
operation. For example:

• Some calls cause a red check on the operation and the other calls cause a green check.
• Some calls cause an orange check on the operation and the other calls cause a green

check.

In the first case, a red Non-terminating call check appears on function calls that cause
a red check. Using this red check on the function calls, you can identify which calls cause
the orange check in the function body. In the second case, a green check appears on all
the function calls. Therefore, you have to specify certain verification options to identify
which function calls cause the orange check in the function body. For this example, store
the following code in file.c:

double getRatio(int num, int den) {

 return(num/den);

}

int input(void);

void main() {

 int i=1, j=1;

 double ratio;

 /* First division */

 ratio = getRatio(i,j);

 /* Second division */

 j=input();

 if(j>=0)

 ratio = getRatio(i,j);

}

1 Create a Polyspace project. Add file.c to the project.
2 Specify that you want to store call context information for the function getRatio.

a On the Configuration pane, select Precision.
b Under Specific Construct Settings, for Sensitivity context, select custom.

 Identify Function Call Causing Orange Check

11-21

c Click to add a new field. Enter getRatio.
3 Run a verification and open the results.

An orange Division by zero check appears in the body of getRatio.
4 To identify which of the two calls to getRatio produces the orange check:

a On the Results Summary pane, select the orange check.
b Select Window > Show/Hide View > Sensitivity Context.

A window opens displaying the line numbers of the two calls. You can see that one
call produces a green check on the division operation and the other call produces an
orange check.

See Also
“Sensitivity context (C/C++)”

Related Examples
• “Review Orange Check”
• “Review Top Sources of Orange Checks”
• “Test Orange Checks for Run-Time Errors”

11 Managing Orange Checks

11-22

More About
• “Sources of Orange Checks”

 Test Orange Checks for Run-Time Errors

11-23

Test Orange Checks for Run-Time Errors

This example shows how to run dynamic tests on orange checks. An orange check means
that Polyspace static verification detects a possible error but cannot prove it. Orange
checks can occur because of:

• Run-time errors.
• Approximations that Polyspace made during static verification.

By running tests, you can determine which orange checks represent run-time errors.
Provided that you have emulated the run-time environment accurately, if a dynamic test
fails, the orange check represents a run-time error. For this example, save the following
code in a file test_orange.c:

volatile int r;

#include <stdio.h>

int input() {

 int k;

 k = r%21 - 10;

 // k has value in [-10,10]

 return k;

}

void main() {

int x=input();

printf("%.2f",1.0/x);

}

Run Tests for Full Range of Input

Note: The Automatic Orange Tester is not supported on Mac.

1 Create a Polyspace project. Add test_orange.c to your project.
2 On the Configuration pane, under Advanced Settings, select Automatic

Orange Tester.

11 Managing Orange Checks

11-24

After verification, Polyspace generates additional source code that tests each orange
check for run-time errors. The software compiles this instrumented code. When you
run the automatic orange tester later, the software tests the resulting binary code.

3 Run a verification and open the results.

An orange Division by Zero error appears on the operation 1.0/x.
4 Select Tools > Automatic Orange Tester.
5 In the Automatic Orange Tester window, click Start.

The Automatic Orange Tester runs tests on your code. If the tests take too long,
use the Stop All button to stop the tests. Reduce Number of tests before running
again.

6 After the tests are completed, under AOT Results, view the number of Tests that
detected run-time errors.

The orange Division by Zero check represents a run-time error, so you see test case
failures.

7 On the Results tab, click the row describing the check.

A Test Case Detail window shows:

• The operation on which the tests were run.
• The test cases that failed with the reason for the failure.

Run Tests for Specified Range of Input

The Automatic Orange Tester window lists variables that cause orange checks.
Because Polyspace does not have sufficient information about these variables, it makes
assumptions about their range. If you know the variable range, you can specify the
variables before running dynamic tests on orange checks. For pointer variables, you can
specify the amount of memory written through the pointer. For instance, if the pointer
points to an array, you can specify whether the first element of the array or the entire
array is written through the pointer.

1 On the row describing r, click Advanced.
2 In the Edit Values window, under Variable Values, select Range of values.
3 Specify a minimum value of 1 and maximum of 9 for r. The Automatic Orange

Tester saves the range as a .tgf file in the Polyspace-Instrumented folder in
your results folder.

 Test Orange Checks for Run-Time Errors

11-25

4 Click Start to restart tests on the orange Division by Zero check for r in [1,9].

A division by zero cannot occur for r in [1,9], so there are no test failures. Although
a test failure indicates a run-time error for specified inputs, because of the finite
number of tests performed, the absence of test failures does not mean absence of a
run-time error.

5 To prove that your range converts the orange check into a green check, you must
provide the range during another static verification.

a Select File > Export DRS.
b Save your ranges as a text file.
c Before running the next verification, on the Configuration pane, under Inputs

& Stubbing, provide the text file for Variable/function range setup.
d Run a verification and open your results.

Instead of orange, there is a green Division by Zero check on the operation
1.0/x.

Related Examples
• “Review Orange Check”
• “Organize Check Review”
• “Review Top Sources of Orange Checks”
• “Identify Function Call Causing Orange Check”

More About
• “Limitations of Automatic Orange Tester”
• “Sources of Orange Checks”
• “Do I Have Too Many Orange Checks?”

11 Managing Orange Checks

11-26

Limitations of Automatic Orange Tester
The Automatic Orange Tester has the following limitations:

In this section...

“Unsupported Platforms” on page 11-26
“Unsupported Polyspace Options” on page 11-26
“Options with Restrictions” on page 11-26
“Unsupported C Routines” on page 11-26

Unsupported Platforms

The Automatic Orange Tester is not supported on Mac.

Unsupported Polyspace Options

The software does not support the following options with -automatic-orange-tester.

• -div-round-down

• -char-is-16its

• -short-is-8bits

In addition, the software does not support global asserts in the code of the form
Pst_Global_Assert(A,B) .

Options with Restrictions

Do not specify the following with -automatic-orange-tester:

• -target [c18 | tms320c3c | x86_64 | sharc21x61]

• -data-range-specification (in global assert mode)

You must use the -target mcpu option together with -pointer-is-32bits.

Unsupported C Routines

The software does not support verification of C code that contains calls to the following
routines:

 Limitations of Automatic Orange Tester

11-27

• va_start

• va_arg

• va_end

• va_copy

• setjmp

• sigsetjmp

• longjmp

• siglongjmp

• signal

• sigset

• sighold

• sigrelse

• sigpause

• sigignore

• sigaction

• sigpending

• sigsuspend

• sigvec

• sigblock

• sigsetmask

• sigprocmask

• siginterrupt

• srand

• srandom

• initstate

• setstate

11-28

12

Coding Rule Sets and Concepts

• “Rule Checking” on page 12-2
• “Custom Naming Convention Rules” on page 12-4
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 12-10
• “Software Quality Objective Subsets (C:2004)” on page 12-11
• “Software Quality Objective Subsets (AC AGC)” on page 12-15
• “MISRA C:2004 Coding Rules” on page 12-17
• “Polyspace MISRA C:2012 Checker” on page 12-56
• “Software Quality Objective Subsets (C:2012)” on page 12-57
• “MISRA C:2012 Coding Directives and Rules” on page 12-59
• “Polyspace MISRA C++ Checker” on page 12-102
• “Software Quality Objective Subsets (C++)” on page 12-103
• “MISRA C++ Coding Rules” on page 12-110
• “Polyspace JSF C++ Checker” on page 12-135
• “JSF C++ Coding Rules” on page 12-136

12 Coding Rule Sets and Concepts

12-2

Rule Checking

Polyspace Coding Rule Checker

Polyspace software allows you to analyze code to demonstrate compliance with
established C and C++ coding standards:

• MISRA C 2004
• MISRA C 2012
• MISRA C++:2008
• JSF++:2005

Applying coding rules can reduce the number of defects and improve the quality of your
code.

While creating a project, you specify both the coding standard, and which rules to
enforce. Polyspace software then performs rule checking before starting analysis, and
reports any violations in the Results Manager perspective.

If any source files in the analysis do not compile, coding rules checking will be
incomplete. The coding rules checker results:

• May not contain full results for files that did not compile
• May not contain full results for the files that did compile as some rules are checked

only after compilation is complete

Note: When you enable the Compilation Assistant and coding rules checking, the
software does not report coding rule violations if there are compilation errors.

Differences Between Bug Finder and Code Prover

Coding rule checker results can differ between Polyspace Bug Finder and Polyspace
Code Prover. The rule checking engines are identical in Bug Finder and Code Prover,
but the context in which the checkers execute is not the same. If a project is launched
from Bug Finder and Code Prover with the same source files and same configuration
options, the coding rule results can differ. For example, the main generator used in Code
Prover activates global variables, which causes the rule checkers to identify such global

 Rule Checking

12-3

variables as initialized. The Bug Finder does not have a main generator, so handles the
initialization of the global variables differently. Another difference is how violations are
reported. The coding rules violations found in header files are not reported to the user in
Bug Finder, but these violations are visible in Code Prover.

This difference can occur in MISRA C:2004, MISRA C:2012, MISRA C++, and JSF++. See
the Polyspace Specification column for each rule.

Even though there are differences between rules checkers in Bug Finder and Code
Prover, both reports are valid in their own context. For quick coding rules checking, use
Polyspace Bug Finder.

12 Coding Rule Sets and Concepts

12-4

Custom Naming Convention Rules

The following table provides information about the custom rules that you can define.

Rule group Number Rule Applied Message generated if
rule is violated

Other details

1.1 All source file names
must follow the
specified pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name
is checked. A source
file is a file that is not
included.

1.2 All source folder
names must follow the
specified pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name
is checked. A source
file is a file that is not
included.

1.3 All include file names
must follow the
specified pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name
is checked. An include
file is a file that is
included.

Files

(C/C++)

1.4 All include folder
names must follow the
specified pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name
is checked. An include
file is a file that is
included.

2.1 All macros must follow
the specified pattern.

The macro
“macro_name” does
not match the specified
pattern.

Macro names are
checked before
preprocessing.

Preprocessing

(C/C++) 2.2 All macro parameters
must follow the
specified pattern.

The macro parameter
“param_name” does
not match the specified
pattern.

Macro parameters
are checked before
preprocessing.

Type
definitions

(C/C++)

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer types
specified by typedef
statements. Does not
apply to enumeration
types. For example:
typedef signed int

int32_t;

 Custom Naming Convention Rules

12-5

Rule group Number Rule Applied Message generated if
rule is violated

Other details

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For
example: typedef
float f32_t;

3.3 All pointer types must
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer
types specified by
typedef statements.
For example: typedef
int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array
types specified by
typedef statements.
For example: typedef
int[3] a_int_3;

3.5 All function pointer
types must follow the
specified pattern.

The function pointer
type “type_name” does
not match the specified
pattern.

Applies to function
pointer types
specified by typedef
statements.
For example:
typedef void

(*pf_callback)

(int);

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct types must
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.Structures

(C/C++)

4.3 All struct fields must
follow the specified
pattern.

The struct field
“field_name” does not
match the specified
pattern.

12 Coding Rule Sets and Concepts

12-6

Rule group Number Rule Applied Message generated if
rule is violated

Other details

4.4 All struct bit fields
must follow the
specified pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

5.1 All class names must
follow the specified
pattern.

The class tag
“tag_name” does not
match the specified
pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members must
follow the specified
pattern.

The data member
“member_name” does
not match the specified
pattern.

5.4 All function members
must follow the
specified pattern.

The function member
“member_name” does
not match the specified
pattern.

5.5 All static data members
must follow the
specified pattern.

The static data member
“member_name” does
not match the specified
pattern.

5.6 All static function
members must follow
the specified pattern.

The static
function member
“member_name” does
not match the specified
pattern.

Classes

(C++)

5.7 All bitfield members
must follow the
specified pattern.

The bitfield
“member_name” does
not match the specified
pattern.

 Custom Naming Convention Rules

12-7

Rule group Number Rule Applied Message generated if
rule is violated

Other details

6.1 All enumeration
tags must follow the
specified pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration
types must follow the
specified pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef
name.Enumerations

(C/C++)
6.3 All enumeration

constants must follow
the specified pattern.

The enumeration
constant
“constant_name” does
not match the specified
pattern.

7.1 All global functions
must follow the
specified pattern.

The global function
“function_name” does
not match the specified
pattern.

A global function is a
function with external
linkage.

7.2 All static functions
must follow the
specified pattern.

The static function
“function_name” does
not match the specified
pattern.

A static function is a
function with internal
linkage.

Functions

(C/C++)

7.3 All function parameters
must follow the
specified pattern.

The function parameter
“param_name” does
not match the specified
pattern.

In C++, applies to non-
member functions.

8.1 All global constants
must follow the
specified pattern.

The global constant
“constant_name” does
not match the specified
pattern.

A global constant is a
constant with external
linkage.

Constants

(C/C++) 8.2 All static constants
must follow the
specified pattern.

The static constant
“constant_name” does
not match the specified
pattern.

A static constant is a
constant with internal
linkage.

12 Coding Rule Sets and Concepts

12-8

Rule group Number Rule Applied Message generated if
rule is violated

Other details

8.3 All local constants must
follow the specified
pattern.

The local constant
“constant_name” does
not match the specified
pattern.

A local constant is
a constant with no
linkage.

8.4 All static local
constants must follow
the specified pattern.

The static
local constant
“constant_name” does
not match the specified
pattern.

A static local constant
is a constant declared
static in a function.

9.1 All global variables
must follow the
specified pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables
must follow the
specified pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables must
follow the specified
pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is
a variable with no
linkage.

Variables

(C/C++)

9.4 All static local variables
must follow the
specified pattern.

The static local variable
“var_name” does not
match the specified
pattern.

A static local variable
is a variable declared
static in a function.

Name spaces

(C++)

10.1 All names paces must
follow the specified
pattern.

The name space “name
space_name” does not
match the specified
pattern.

Class
templates

(C++)

11.1 All class templates
must follow the
specified pattern.

The class template
“template_name” does
not match the specified
pattern.

 Custom Naming Convention Rules

12-9

Rule group Number Rule Applied Message generated if
rule is violated

Other details

11.2 All class template
parameters must follow
the specified pattern.

The class template
parameter
“param_name” does
not match the specified
pattern.

12.1 All function templates
must follow the
specified pattern.

The function template
“template_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.2 All function template
parameters must follow
the specified pattern.

The function
template parameter
“param_name” does
not match the specified
pattern.

Applies to non-member
functions.Function

templates

(C++)
12.3 All function template

members must follow
the specified pattern.

The function
template member
“member_name” does
not match the specified
pattern.

12 Coding Rule Sets and Concepts

12-10

Polyspace MISRA C 2004 and MISRA AC AGC Checkers

The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.3

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 12-11
• “Software Quality Objective Subsets (AC AGC)” on page 12-15

Note: The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum (http://www.misra-c.com).

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

http://www.misra-c.com/

 Software Quality Objective Subsets (C:2004)

12-11

Software Quality Objective Subsets (C:2004)

In this section...

“Rules in SQO-Subset1” on page 12-11
“Rules in SQO-Subset2” on page 12-12

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not
be used.

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.

12 Coding Rule Sets and Concepts

12-12

Rule number Description

16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

Rule number Description

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

9.2 Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures

 Software Quality Objective Subsets (C:2004)

12-13

Rule number Description

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used
13.1 Assignment operators shall not be used in expressions that yield

Boolean values
13.2 Tests of a value against zero should be made explicit, unless the

operand is effectively Boolean
13.6 Numeric variables being used within a “for” loop for iteration

counting should not be modified in the body of the loop
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause

12 Coding Rule Sets and Concepts

12-14

Rule number Description

16.3 Identifiers shall be given for all of the parameters in a function
prototype declaration

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

19.4 C macros shall only expand to a braced initializer, a constant, a
parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

 Software Quality Objective Subsets (AC AGC)

12-15

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subset1” on page 12-15
“Rules in SQO-Subset2” on page 12-15

Rules in SQO-Subset1

The following set of MISRA AC AGC coding rules typically reduces the number of
unproven results.

• 5.2
• 8.11 and 8.12
• 11.2 and 11.3
• 12.12
• 14.7
• 16.1 and 16.2
• 17.3 and 17.6
• 18.4

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results. The following set of coding rules enforce good design
practices. The SQO-subset2 option checks the rules in SQO-subset1 and SQO-
subset2.

• 5.2
• 6.3
• 8.7, 8.11, and 8.12
• 9.3
• 11.1, 11.2, 11.3, and 11.5

12 Coding Rule Sets and Concepts

12-16

• 12.2, 12.9, 12.10, and 12.12
• 14.7
• 16.1, 16.2, 16.3, 16.8, and 16.9
• 17.3, and 17.6
• 18.4
• 19.9, 19.10, 19.11, and 19.12
• 20.3

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

 MISRA C:2004 Coding Rules

12-17

MISRA C:2004 Coding Rules

In this section...

“Supported MISRA C:2004 Rules” on page 12-17
“MISRA C:2004 Rules Not Checked” on page 12-53

Supported MISRA C:2004 Rules

The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note: The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note: Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

Environment

N. MISRA Definition Messages in report file Polyspace Specification

1.1 All code shall conform to ISO
9899:1990 “Programming

The text All code shall
conform to ISO 9899:1990

All the supported extensions
lead to a violation of this

12 Coding Rule Sets and Concepts

12-18

N. MISRA Definition Messages in report file Polyspace Specification

languages - C”, amended and
corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC
9899/COR2:1996.

Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

 MISRA C:2004 Coding Rules

12-19

N. MISRA Definition Messages in report file Polyspace Specification

1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

12 Coding Rule Sets and Concepts

12-20

N. MISRA Definition Messages in report file Polyspace Specification

• Too many enumeration
constants: N1. The limit
is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in asm
functions or in asm pragma
(only warning is given on
asm statements even if it is
encapsulated by a MACRO).

2.2 Source code shall only use /*
*/ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source code.

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification

3.4 All uses of the #pragma
directive shall be documented
and explained.

All uses of the #pragma
directive shall be
documented and explained.

To check this rule, the option
-allowed-pragmas must be
set to the list of pragmas that
are allowed in source files.
Warning if a pragma that
does not belong to the list is
found.

 MISRA C:2004 Coding Rules

12-21

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification

4.1 Only those escape sequences
which are defined in the ISO
C standard shall be used.

\<character> is not an ISO
C escape sequence
Only those escape sequences
which are defined in the ISO
C standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification

5.1 Identifiers (internal and
external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static
name is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule

12 Coding Rule Sets and Concepts

12-22

N. MISRA Definition Messages in report file Polyspace Specification

differently. The analyses can
produce different results.

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at %s:%d)

Warning when an idf in
a namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the same
name as a parameter of
another function

Types

N. MISRA Definition Messages in report file Polyspace Specification

6.1 The plain char type shall be
used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '==' or
'!=' operators, explicit casts
to integral types and '?' (for
the 2nd and 3rd operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

6.2 Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

• Value of type plain char
is implicitly converted to
signed char.

• Value of type plain char
is implicitly converted to
unsigned char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

 MISRA C:2004 Coding Rules

12-23

N. MISRA Definition Messages in report file Polyspace Specification

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be
defined to be of type unsigned
int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in report file Polyspace Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

12 Coding Rule Sets and Concepts

12-24

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
'XX' incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of 'XX' function has
incompatible type with
its definition.

• Global declaration
of 'XX' variable has
incompatible type with
its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

 MISRA C:2004 Coding Rules

12-25

N. MISRA Definition Messages in report file Polyspace Specification

• Fragment of function
should not be defined in a
header file.

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

8.8 An external object or function
shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative of
definitions are ignored).

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX

• Global variable has
multiples tentative of
definitions

• Undefined global
variable XX

Tentative of definitions are
considered as definitions,
no warning on predefined
symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

12 Coding Rule Sets and Concepts

12-26

N. MISRA Definition Messages in report file Polyspace Specification

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

Initialization

N. MISRA Definition Messages in report file Polyspace Specification

9.1 All automatic variables shall
have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the first,
unless all items are explicitly
initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

 MISRA C:2004 Coding Rules

12-27

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of the
expression of underlying
type XX to the type
XX that is not a wider
integer type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or option
setting).

The underlying type of
a simple expression of
struct.bitfield is the base type
used in the bitfield definition,
the bitfield width is not token
into account and it assumes
that only signed | unsigned
int are used for bitfield (Rule
6.4).

10.1
(cont)

 • Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying

No violation reported when:

• The implicit conversion is
a type widening, without
change of signedness if
integer

• The expression is an
argument expression or a
return expression

12 Coding Rule Sets and Concepts

12-28

N. MISRA Definition Messages in report file Polyspace Specification

type XX to XX, but it is a
complex expression.

• Implicit conversion
of complex integer
expression of underlying
type XX to XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX in function
return whose expected
type is XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument
of function whose
corresponding parameter
type is XX.

No violation reported when
the following are all true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness if
integer

• The conversion does not
change the representation
of the constant value or
the result of the operation

• The expression is an
argument expression or
a return expression or an
operand expression of a
non-bitwise operator

 MISRA C:2004 Coding Rules

12-29

N. MISRA Definition Messages in report file Polyspace Specification

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to
XX that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion
of complex floating
expression from XX to
XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of
XX type as argument
of function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that T2
is wider than T1 if T2 is on
the right hand of T1 or T2 =
T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

12 Coding Rule Sets and Concepts

12-30

N. MISRA Definition Messages in report file Polyspace Specification

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type XX may
only be cast to narrower
integer type of same
signedness, however the
destination type is XX.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of
a simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed, unsigned
int are used for bitfield
(Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination
type is XX.

ANSI C base types order
(float, double) defines that T1
is narrower than T2 if T2 is
on the right hand of T1 or T2
= T1.

 MISRA C:2004 Coding Rules

12-31

N. MISRA Definition Messages in report file Polyspace Specification

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding
rule checker will report a
violation of rule 10.6 for the
following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and
long int are not the same
size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

11.1 Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

12 Coding Rule Sets and Concepts

12-32

N. MISRA Definition Messages in report file Polyspace Specification

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be
performed that removes any
const or volatile qualification
from the type addressed by a
pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification

12.1 Limited dependence
should be placed on C's
operator precedence rules in
expressions

Limited dependence
should be placed on C's
operator precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

The expression is a simple
expression of symbols (Unlike
i = i++; no detection on tab[2]
= tab[2]++;). Rule 12.2 check
assumes that no assignment
in expressions that yield a
Boolean values (rule 13.1)
and the comma operator is
not used (rule 12.10).

 MISRA C:2004 Coding Rules

12-33

N. MISRA Definition Messages in report file Polyspace Specification

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

12.4 The right hand operand of
a logical && or || operator
shall not contain side effects.

The right hand operand of
a logical && or || operator
shall not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical
&& or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a
logical && or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

12 Coding Rule Sets and Concepts

12-34

N. MISRA Definition Messages in report file Polyspace Specification

12.6 Operands of logical operators
(&&, || and !) should
be effectively Boolean.
Expression that are
effectively Boolean should
not be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than
'&&', '||', '!', '=', '==', '!='
and '?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data
type, the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;

if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical

operator should be

effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

 MISRA C:2004 Coding Rules

12-35

N. MISRA Definition Messages in report file Polyspace Specification

number of warnings
generated.

12.7 Bitwise operators shall not
be applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/
&] operator applied on
an expression whose
underlying type is
signed.

• Bitwise ~ on operand of
signed underlying type
XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX
of the left hand operand -
1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide
so that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall
not be used.

12 Coding Rule Sets and Concepts

12-36

N. MISRA Definition Messages in report file Polyspace Specification

12.11 Evaluation of constant
unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer
expressions should not lead
to wrap-around.

12.12 The underlying bit
representations of floating-
point values shall not be
used.

The underlying bit
representations of floating-
point values shall not be
used.

Warning when:

• A float pointer is cast
as a pointer to another
data type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {

 float f;

 int i;

} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may

 MISRA C:2004 Coding Rules

12-37

N. MISRA Definition Messages in report file Polyspace Specification

increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression
of a for statement shall not
contain any objects of floating
type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is not
a float.

12 Coding Rule Sets and Concepts

12-38

N. MISRA Definition Messages in report file Polyspace Specification

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should
be an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression (if
present). Checked if, in first
expression, if present, is
assignment of V; checked if
in 2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being
used within a for loop for
iteration counting should not
be modified in the body of the
loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

 MISRA C:2004 Coding Rules

12-39

N. MISRA Definition Messages in report file Polyspace Specification

13.7 Boolean operations whose
results are invariant shall not
be permitted

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always true.

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always false.

• Boolean operations
whose results are
invariant shall not be
permitted.

During compilation, check
comparisons with at least one
constant operand.

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification

14.1 There shall be no
unreachable code.

There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at lest one side
effect however executed, or
cause control flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements shall
either

• have at lest one side effect
however executed, or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ';' is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

12 Coding Rule Sets and Concepts

12-40

N. MISRA Definition Messages in report file Polyspace Specification

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

 MISRA C:2004 Coding Rules

12-41

N. MISRA Definition Messages in report file Polyspace Specification

14.9 An if (expression) construct
shall be followed by a
compound statement. The
else keyword shall be followed
by either a compound
statement, or another if
statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification

15.0 Unreachable code is detected
between switch statement
and first case.

Note: This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log
file at line 3:

1 ...

2 switch(index) {

3 var = var + 1;

// RULE 15.0

// violated

4case 1: ...

The code between switch
statement and first case
is checked as dead code by
Polyspace. It follows ANSI
standard behavior.

12 Coding Rule Sets and Concepts

12-42

N. MISRA Definition Messages in report file Polyspace Specification

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Call graph in the Results
Manager perspective gives
the information). Polyspace
also checks that partially
during compilation phase.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

 MISRA C:2004 Coding Rules

12-43

N. MISRA Definition Messages in report file Polyspace Specification

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no

parameters shall be declared
with parameter type void.

Functions with no
parameters shall be declared
with parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that
is declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit
return statement with an
expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX
should be preceded by a & or
followed by a parameter list.

12 Coding Rule Sets and Concepts

12-44

N. MISRA Definition Messages in report file Polyspace Specification

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for
calls of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification

17.1 Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

17.2 Pointer subtraction shall only
be applied to pointers that
address elements of the same
array

Pointer subtraction shall
only be applied to pointers
that address elements of the
same array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I an
integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not

Pointer to a parameter is an
illegal return value. Pointer

Warning when assigning
address to a global variable,

 MISRA C:2004 Coding Rules

12-45

N. MISRA Definition Messages in report file Polyspace Specification

be assigned to an object that
may persist after the object
has ceased to exist.

to a local is an illegal return
value.

returning a local variable
address, or returning a
parameter address.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not
be assigned to an
overlapping object.

• Destination and source of
XX overlap, the behavior
is undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification

19.1 #include statements in a file
shall only be preceded by
other preprocessors directives
or comments

#include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other things
than preprocessor directives,
comments, spaces or “new
lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ', \, " or /
* between < and > in
#include <filename>

• A message is displayed
on characters ', \or /
* between " and " in
#include "filename"

12 Coding Rule Sets and Concepts

12-46

N. MISRA Definition Messages in report file Polyspace Specification

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can

be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a
block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

 MISRA C:2004 Coding Rules

12-47

N. MISRA Definition Messages in report file Polyspace Specification

19.7 A function should be used in
preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall
not be invoked without all of
its arguments

• arguments given to
macro '<name>'

• macro '<name>' used
without args.

• macro '<name>' used
with just one arg.

• macro '<name>'
used with too many
(<number>) args.

19.9 Arguments to a function-
like macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a
function-like macro each
instance of a parameter shall
be enclosed in parentheses
unless it is used as the
operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter,
the following instances of x
as an operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as
an argument of a function
or function-like macro.
For example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x, or
,x) or ,x,.

12 Coding Rule Sets and Concepts

12-48

N. MISRA Definition Messages in report file Polyspace Specification

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions
of macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

'defined' without an
identifier.

 MISRA C:2004 Coding Rules

12-49

N. MISRA Definition Messages in report file Polyspace Specification

19.15 Precautions shall be taken
in order to prevent the
contents of a header file being
included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as:

#ifndef <control macro>

#define <control macro>

<contents> #endif

or:

#ifdef <control macro>

#error ...

#else

#define <control macro>

<contents> #endif

it is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

19.16 Preprocessing directives shall
be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

12 Coding Rule Sets and Concepts

12-50

N. MISRA Definition Messages in report file Polyspace Specification

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to which
they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification

20.1 Reserved identifiers, macros
and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

20.2 The names of standard
library macros, objects and
functions shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1. Tentative of definitions
are considered as definitions.

20.3 The validity of values passed
to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

 MISRA C:2004 Coding Rules

12-51

N. MISRA Definition Messages in report file Polyspace Specification

• Argument is a local
variable

• Local variable is not
tested between last
assignment and call to the
library function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is not
violated

12 Coding Rule Sets and Concepts

12-52

N. MISRA Definition Messages in report file Polyspace Specification

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually macros
and are expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that
rule 20.2 is not violated

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

 MISRA C:2004 Coding Rules

12-53

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

MISRA C:2004 Rules Not Checked

The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of
MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule Description Polyspace Specification

1.2 (Required) No reliance shall be placed on
undefined or unspecified behavior

Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers
(internal and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character

The documentation of compiler must be
checked.

12 Coding Rule Sets and Concepts

12-54

Rule Description Polyspace Specification

significance and case sensitivity are
supported for external identifiers.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

The documentation of compiler must be
checked as this implementation is done
by the compiler

Language Extensions

Rule Description Polyspace Specification

2.4 (Advisory) Sections of code should not be
“commented out”

It might be some pseudo code or code
that does not compile inside a comment.

Documentation

Rule Description Polyspace Specification

3.1 (Required) All usage of implementation-defined
behavior shall be documented.

The documentation of compiler must
be checked. Error detection is based on
undefined behavior, according to choices
made for implementation- defined
constructions. Documentation can not be
checked.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

The documentation of compiler must be
checked.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

The documentation of compiler must be
checked.

3.5 (Required) The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

The documentation of compiler must be
checked.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

The documentation of compiler must be
checked.

 MISRA C:2004 Coding Rules

12-55

Structures and Unions

Rule Description Polyspace Specification

18.3 (Required) An area of memory shall not be reused
for unrelated purposes.

"purpose" is functional design issue.

12 Coding Rule Sets and Concepts

12-56

Polyspace MISRA C:2012 Checker

The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012
coding standard.4

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

The checker can check 138 of the 159 MISRA C:2012 guidelines.

Each guideline is categorized into one of these three categories: mandatory, required,
or advisory. When you set up rule checking, you can select subsets of these categories
to check. For automatically generated code, some rules change categories, including to
one additional category: readability. The “Use generated code requirements (C)” option
activates the categorization for automatically generated code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 12-57.

See Also
“Check MISRA C:2012” | “Use generated code requirements (C)”

Related Examples
• “Activate Coding Rules Checker”

More About
• “MISRA C:2012 Coding Directives and Rules” on page 12-59
• “Software Quality Objective Subsets (C:2012)” on page 12-57

4. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

 Software Quality Objective Subsets (C:2012)

12-57

Software Quality Objective Subsets (C:2012)

In this section...

“Guidelines in SQO-Subset1” on page 12-57
“Guidelines in SQO-Subset2” on page 12-57

Polyspace defined these subsets of MISRA C:2012 guidelines to identify the guidelines
that can have a direct or indirect impact on the precision of your Polyspace results. When
you set up checking, you can select these subsets.

Guidelines in SQO-Subset1

The following set of MISRA C:2012 coding guidelines typically reduces the number of
unproven results.

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

Guidelines in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results. The following set of coding guidelines enforce good design
practices. The SQO-subset2 option contains the guidelines in SQO-subset1 and some
additional guidelines.

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, 11.7, and 11.8
• 12.1 and 12.3
• 13.2 and 13.4

12 Coding Rule Sets and Concepts

12-58

• 14.1, 14.2 and 14.4
• 15.1, 15.2, 15.3, 15.5, 15.6 and 15.7
• 16.4 and 16.5
• 17.1,17.2, and 17.4
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 20.4, 20.6, 20.7, 20.9, and 20.11
• 21.3

 MISRA C:2012 Coding Directives and Rules

12-59

MISRA C:2012 Coding Directives and Rules

In this section...

“Supported MISRA C:2012 Rules” on page 12-59
“MISRA C:2012 Guidelines Not Checked” on page 12-99

Supported MISRA C:2012 Rules

The following tables list MISRA C:2012 coding rules that the Polyspace coding rules
checker supports. The “Polyspace Specification” column describes how the software
checks individual rules and any limitations on the scope of checking.

• “Code Design” on page 12-60
• “A Standard C Environment” on page 12-62
• “Unused Code” on page 12-66
• “Comments” on page 12-67
• “Character Sets and Lexical Conventions” on page 12-67
• “Identifiers” on page 12-68
• “Types” on page 12-70
• “Literals and Constants” on page 12-70
• “Declarations and Definitions” on page 12-71
• “Initialization” on page 12-75
• “The Essential Type Model” on page 12-76
• “Pointer Type Conversions” on page 12-79
• “Expressions” on page 12-81
• “Side Effects” on page 12-82
• “Control Statement Expressions” on page 12-83
• “Control Flow” on page 12-85
• “Switch Statements” on page 12-87
• “Function” on page 12-89
• “Pointers and Arrays” on page 12-90

12 Coding Rule Sets and Concepts

12-60

• “Overlapping Storage” on page 12-92
• “Preprocessing Directives” on page 12-92
• “Standard Libraries” on page 12-96

Code Design

Directive
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Dir 4.1 Required Required Run-time failures
shall be minimized

Run-time failures
shall be minimized

Done by Polyspace.

Bug Finder and Code
Prover check this
directive differently.
The analyses can
produce different
results.

Dir 4.3 Required Required Assembly
language shall be
encapsulated and
isolated

Assembly
language shall be
encapsulated and
isolated

No warnings if code
is encapsulated in
asm functions or in
asm pragma. The
only warning on
asm statements is
if the statement is
encapsulated by a
MACRO.

Dir 4.6 Advisory Advisory typedefs that
indicate size
and signedness
should be used in
place of the basic
numerical types

typedefs that
indicate size and
signedness should
be used in place of
the basic numerical
types

No warning is given in
typedef definition.

Dir 4.9 Advisory Advisory A function
should be used
in preference
to a function-
like macro
where they are
interchangeable

A function
should be used in
preference to a
function like-macro

Message on all
function-like macros
definitions.

 MISRA C:2012 Coding Directives and Rules

12-61

Directive
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Dir
4.10

Required Required Precautions shall
be taken in order
to prevent the
contents of a
header file being
included more
than once

Precautions shall
be taken in order
to prevent the
contents of a
header file being
included more than
once

Take precautions
to prevent multiple
inclusions when a
header file is formatted
as:

#ifndef <control macro>

#define <control macro>

 contents

#endif

or

#ifdef <control macro>

#error ...

#else

#define <control macro>

 contents

#endif

Otherwise, a violation
of this MISRA rule is
detected.

12 Coding Rule Sets and Concepts

12-62

Directive
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Dir
4.11

Required Required The validity of
values passed to
library functions
shall be checked

The validity of
values passed to
library functions
shall be checked

Warning for argument
in library function call,
if the following are all
true:

• Argument is a local
variable

• Local variable is
not tested between
last assignment and
call to the library
function

• Library function
is a common
mathematical
function

• Corresponding
parameter of the
library function has
a restricted input
domain.

The library function
can be one of the
following : sqrt, tan,
pow, log, log10, fmod,
acos, asin, acosh,
atanh, or atan2.

A Standard C Environment

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
1.1

Required Required The program
shall contain no
violations of the
standard C syntax

Too many nesting
levels of #includes:
N1. The limit is N0.

Standard compilation
error messages do not
lead to a violation of

 MISRA C:2012 Coding Directives and Rules

12-63

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

and constraints,
and shall not
exceed the
implementation’s
translation limits

Integer constant is
too large.

ANSI C does not
allow '#XX'.

Text following
preprocessing
directive violates

ANSI standard.

Too many macro
definitions: N1. The
limit is N0.

Array of zero size
should not be used.

Integer constant
does not fit within
long int.

Integer constant
does not fit within
unsigned long int.

Too many nesting
levels for control
flow: N1. The limit
is N0.

Assembly language
should not be used.

Too many
enumeration
constants: N1. The
limit is N0.

this MISRA rule and
remain unchanged

12 Coding Rule Sets and Concepts

12-64

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
1.2

Advisory Advisory Language
extensions should
not be used

ANSI C90 forbids
hexadecimal
floating-point
constants.

ANSI C90 forbids
universal character
names.

ANSI C90 forbids
mixed declarations
and code.

ANSI C90/C99
forbids case ranges.

ANSI C90/C99
forbids local label
declaration.

ANSI C90 forbids
mixed declarations
and code.

ANSI C90/C99
forbids typeof
operator.

ANSI C90/C99
forbids casts to
union.

ANSI C90 forbids
compound literals.

ANSI C90/C99
forbids statements
and declarations in
expressions.

All the supported
extensions lead to a
violation of this MISRA
rule.

 MISRA C:2012 Coding Directives and Rules

12-65

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

ANSI C90 forbids
__func__ predefined
identifier.

Rule
1.2
(cont)

 ANSI C90 forbids
keyword '_Bool'.

ANSI C90 forbids
'long long int' type.

ANSI C90 forbids
long long integer
constants.

ANSI C90 forbids
'long double' type.

ANSI C90/C99
forbids 'short long
int' type.

ANSI C90
forbids _Pragma
preprocessing
operator.

ANSI C90 does not
allow macros with
variable arguments
list.

ANSI C90 forbids
designated
initializer. Keyword
'inline' should not
be used.

12 Coding Rule Sets and Concepts

12-66

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
1.3

Required Required There shall be
no occurrence
of undefined or
critical unspecified
behaviour

There shall be
no occurrence
of undefined or
critical unspecified
behavior

• 'defined' without
an identifier.

• macro 'XX' used
with too few
arguments.

• macro 'XX used
with too many
arguments.

Unused Code

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
2.1

Required Required A project shall
not contain
unreachable code.

A project shall
not contain
unreachable code.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

Rule
2.2

Required Required There shall be no
dead code.

There shall be no
dead code.

Useless writes done by
Polyspace.

Rule
2.3

Advisory Readability A project should
not contain
unused type
declarations.

A project should
not contain unused
type declarations:
type XX is not used.

Rule
2.4

Advisory Readability A project should
not contain
unused tag
declarations.

A project should
not contain unused
tag declarations:
tag XX is not used.

 MISRA C:2012 Coding Directives and Rules

12-67

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
2.5

Advisory Readability A project should
not contain
unused macro
declarations.

A project should
not contain unused
macro declarations:
macro XX is not
used.

Comments

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
3.1

Required Required The character
sequences /* and //
shall not be used
within a comment

The character
sequence /* shall
not appear within a
comment.

This rule violation is
also raised when the
character sequence
“/*” is inside a C+
+ comment. Note:
This rule cannot be
annotated in the source
code.

Rule
3.2

Required Required Line-splicing shall
not be used in //
comments

Line-splicing shall
not be used in //
comments.

Character Sets and Lexical Conventions

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
4.1

Required Required Octal and
hexadecimal
escape sequences
shall be
terminated

Octal and
hexadecimal escape
sequences shall be
terminated.

Rule
4.2

Advisory Advisory Trigraphs should
not be used

Trigraphs should
not be used.

Trigraphs are handled
and converted to the
equivalent character
but lead to a violation
of the MISRA rule.

12 Coding Rule Sets and Concepts

12-68

Identifiers

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
5.1

Required Required External
identifiers shall be
distinct

External %s %s
conflicts with the
external identifier
XX in file YY.

Rule
5.2

Required Required Identifiers
declared in the
same scope and
name space shall
be distinct

Identifiers declared
in the same scope
and name space
shall be distinct.
Identifier XX has
same significant
characters as
identifier YY.

Rule
5.3

Required Advisory An identifier
declared in an
inner scope
shall not hide an
identifier declared
in an outer scope

Variable XX hides
variable XX (FILE
line LINE column
COLUMN).

Rule
5.4

Required Required Macro identifiers
shall be distinct

Macro identifiers
shall be distinct.
Macro XX has
same significant
characters as macro
YY.

Macro identifiers
shall be distinct.
Macro parameter
XX has same
significant
characters as macro
parameter YY in
macro ZZ.

 MISRA C:2012 Coding Directives and Rules

12-69

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
5.5

Required Required Identifiers shall
be distinct from
macro names

Identifiers shall
be distinct from
macro names.
Identifier XX has
same significant
characters as macro
YY.

Rule
5.6

 Required A typedef name
shall be a unique
identifier

XX conflicts with
the typedef name
YY.

Rule
5.7

Required Required A tag name shall
be a unique
identifier

XX conflicts with
the tag name YY.

Rule
5.8

Required Required Identifiers that
define objects or
functions with
external linkage
shall be unique

Object XX conflicts
with the object
name YY.

Function XX
conflicts with the
function name YY.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

Rule
5.9

Advisory Readability Identifiers that
define objects or
functions with
internal linkage
should be unique

Object XX conflicts
with the object
name YY.

Function XX
conflicts with the
function name YY.

This rule checker
assumes that rule 5.8 is
not violated.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

12 Coding Rule Sets and Concepts

12-70

Types

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
6.1

Required Required Bit-fields
shall only be
declared with an
appropriate type

Bit-fields shall only
be declared with an
appropriate type.

Rule
6.2

Required Required Single-bit named
bit fields shall not
be of a signed type

Single-bit named
bit fields shall not
be of a signed type.

Literals and Constants

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
7.1

Required Advisory Octal constants
shall not be used

Octal constants
shall not be used.

Rule
7.2

Required Readability A “u” or “U” suffix
shall be applied
to all integer
constants that are
represented in an
unsigned type

A “u” or “U” suffix
shall be applied
to all integer
constants that are
represented in an
unsigned type.

Warning when the
type determined from
the value and the
base (octal, decimal,
or hexadecimal) is
unsigned and there is
no suffix u or U.

For example, when
the size of the int and
long int data types
is 32 bits, the coding
rule checker reports a
violation of rule 10.6 for
the following line:

int a = 2147483648;

There is a difference
between decimal and
hexadecimal constants

 MISRA C:2012 Coding Directives and Rules

12-71

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

when int and long int
are not the same size.

Rule
7.3

Required Readability The lowercase
character “l” shall
not be used in a
literal suffix

The lowercase
character “l” shall
not be used in a
literal suffix.

Rule
7.4

Required Required A string literal
shall not be
assigned to an
object unless the
object’s type is
“pointer to const-
qualified char

A string literal
shall not be
assigned to an
object unless the
object’s type is
“pointer to const-
qualified char.

Declarations and Definitions

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
8.1

Required Required Types shall be
explicitly specified

Types shall be
explicitly specified.

Rule
8.2

Required Required Function types
shall be in
prototype form
with named
parameters

Too many
arguments to 'XX'.

Too few arguments
to 'XX'.

Function types
shall be in
prototype form with
named parameters.

Definitions are also
checked.

Rule
8.3

Required Required All declarations
of an object or
function shall use
the same names
and type qualifiers

Definition of
function 'XX'
incompatible with
its declaration.

There is a possibility
that violations of this
rule are generated
during the link phase.

12 Coding Rule Sets and Concepts

12-72

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Global declaration
of 'XX' function has
incompatible type
with its definition.

Global declaration
of 'XX' variable has
incompatible type
with its definition.

All declarations
of an object or
function shall use
the same names
and type qualifiers.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

Rule
8.4

Required Advisory A compatible
declaration shall
be visible when an
object or function
with external
linkage is defined

Global definition
of 'XX' variable
has no previous
declaration.

Function 'XX'
has no visible
compatible
prototype at
definition.

Rule
8.5

Required Advisory An external object
or function shall
be declared once in
one and only one
file

Object 'XX'
has external
declarations in
multiples files.

Function 'XX'
has external
declarations in
multiples files.

Restricted to explicit
extern declarations
(tentative definitions
are ignored).

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

 MISRA C:2012 Coding Directives and Rules

12-73

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
8.6

Required Required An identifier with
external linkage
shall have exactly
one external
definition

Forbidden multiple
definitions for
function XX.

Forbidden multiple
tentatives of
definition for object
XX.

Global variable XX
multiply defined.

Function XX
multiply defined.

Global variable has
multiples tentative
of definitions

Undefined global
variable XX

Tentative definitions
are considered as
definitions, no warning
on predefined symbols.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.
.

Rule
8.7

Advisory Advisory Functions and
objects should
not be defined
with external
linkage if they are
referenced in only
one translation
unit

Variable XX should
have internal
linkage.

Function XX should
have internal
linkage.

If there are no uses, no
warning is raised.

Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

12 Coding Rule Sets and Concepts

12-74

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
8.8

Required Required The static storage
class specifier
shall be used in
all declarations
of objects and
functions that
have internal
linkage

The static storage
class specifier
shall be used in
all declarations
of objects and
functions that have
internal linkage.

Rule
8.9

Advisory Advisory An object should
be defined at
block scope if its
identifier only
appears in a single
function

An object should
be defined at
block scope if its
identifier only
appears in a single
function.

Restricted to static
objects.

Rule
8.10

Required Required An inline function
shall be declared
with the static
storage class

An inline function
shall be declared
with the static
storage class.

Rule
8.11

Advisory Advisory When an array
with external
linkage is
declared, its
size should be
explicitly specified

Size of array 'XX'
should be explicitly
stated. When an
array with external
linkage is declared,
its size should be
explicitly specified

Rule
8.12

Required Required Within an
enumerator list,
the value of an
implicitly-specified
enumeration
constant shall be
unique

The constant XX
has same value as
the constant YY.

 MISRA C:2012 Coding Directives and Rules

12-75

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
8.13

Advisory Advisory A pointer should
point to a const-
qualified type
whenever possible

A pointer should
point to a const-
qualified type
whenever possible.

A warning is issued
if a non-const pointer
parameter is either:

• Not used to modify
the addressed
object,

or
• Is passed to a call

of a function that
is declared with
a const pointer
parameter.

Rule
8.14

Required Advisory The restrict type
qualifier shall not
be used

The restrict type
qualifier shall not
be used.

Initialization

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
9.1

Mandatory Mandatory The value of
an object with
automatic storage
duration shall not
be read before it
has been set

The value of
an object with
automatic storage
duration shall not
be read before it
has been set.

The Polyspace analysis
checks some of the
violations as non-
initialized variables.
Bug Finder and Code
Prover check this
coding rule differently.
The analyses can
produce different
results.

Rule
9.2

Required Readability The initializer
for an aggregate
or union shall be
enclosed in braces

The initializer
for an aggregate
or union shall be
enclosed in braces

12 Coding Rule Sets and Concepts

12-76

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
9.3

Required Readability Arrays shall
not be partially
initialized

Arrays shall not be
partially initialized

Rule
9.4

Required Required An element of an
object shall not be
initialized more
than once

An element of an
object shall not be
initialized more
than once

Rule
9.5

Required Readability Where designated
initializers are
used to initialize
an array object the
size of the array
shall be specified
explicitly

Where designated
initializers are
used to initialize
an array object the
size of the array
shall be specified
explicitly

The Essential Type Model

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
10.1

Required Advisory Operands shall
not be of an
inappropriate
essential type

The XX operand of
the YY operator is
of an inappropriate
essential type
category ZZ.

Rule
10.2

Required Advisory Expressions
of essentially
character type
shall not be used
inappropriately
in addition and
subtraction
operations

The XX operand
of the + operator
applied to an
expression of
essentially
character type shall
have essentially
signed or unsigned
type.

The right operand
of the - operator

 MISRA C:2012 Coding Directives and Rules

12-77

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

applied to an
expression of
essentially
character type shall
have essentially
signed or unsigned
or character type.

The left operand of
the - operator shall
have essentially
character type if
the right operand
has essentially
character type.

Rule
10.3

Required Advisory The value of an
expression shall
not be assigned
to an object
with a narrower
essential type
or of a different
essential type
category

The expression
is assigned to
an object with a
different essential
type category.

The expression
is assigned to
an object with a
narrower essential
type.

Rule
10.4

Required Advisory Both operands
of an operator
in which the
usual arithmetic
conversions are
performed shall
have the same
essential type
category

Operands of XX
operator shall have
the same essential
type category.

Rule
10.5

Advisory Advisory The value of an
expression should

The value of an
expression should

12 Coding Rule Sets and Concepts

12-78

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

not be cast to an
inappropriate
essential type

not be cast to an
inappropriate
essential type.

Rule
10.6

Required Advisory The value of
a composite
expression shall
not be assigned
to an object with
wider essential
type

The composite
expression is
assigned to an
object with a wider
essential type.

Rule
10.7

Required Advisory If a composite
expression is used
as one operand
of an operator
in which the
usual arithmetic
conversions are
performed then
the other operand
shall not have
wider essential
type

The right operand
shall not have
wider essential
type than the left
operand which
is a composite
expression.

The left operand
shall not have
wider essential
type than the right
operand which
is a composite
expression.

 MISRA C:2012 Coding Directives and Rules

12-79

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
10.8

Required Advisory The value of
a composite
expression shall
not be cast to a
different essential
type category or
a wider essential
type

The value of
a composite
expression shall
not be cast to a
different essential
type category.

The value of
a composite
expression shall not
be cast to a wider
essential type.

Pointer Type Conversions

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
11.1

Required Required Conversions shall
not be performed
between a pointer
to a function and
any other type

Conversions shall
not be performed
between a pointer
to a function and
any other type

Casts and implicit
conversions involve a
function pointer.

Casts or implicit
conversions from NULL
or (void*)0 do not
generate a warning.

Rule
11.2

Required Required Conversions shall
not be performed
between a pointer
to an incomplete
type and any other
type

Conversions shall
not be performed
between a pointer
to an incomplete
type and any other
type.

Rule
11.3

Required Required A cast shall not
be performed
between a pointer
to object type
and a pointer to

A cast shall not be
performed between
a pointer to object
type and a pointer
to a different object
type.

12 Coding Rule Sets and Concepts

12-80

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

a different object
type

Rule
11.4

Advisory Advisory A conversion
should not
be performed
between a pointer
to object and an
integer type

A conversion
should not be
performed between
a pointer to object
and an integer type

Casts or implicit
conversions from NULL
or (void*)0 do not
generate a warning.

Rule
11.5

Advisory Advisory A conversion
should not be
performed from
pointer to void into
pointer to object.

A conversion
should not be
performed from
pointer to void into
pointer to object.

Casts or implicit
conversions from NULL
or (void*)0 do not
generate a warning.

Rule
11.6

Required Required A cast shall not
be performed
between pointer
to void and an
arithmetic type

A cast shall not be
performed between
pointer to void and
an arithmetic type.

Casts or implicit
conversions from NULL
or (void*)0 do not
generate a warning.

Rule
11.7

Required Required A cast shall not
be performed
between pointer to
object and a non-
integer arithmetic
type

A cast shall not be
performed between
pointer to object
and a non-integer
arithmetic type.

Rule
11.8

Required Required A cast shall
not remove any
const or volatile
qualification from
the type pointed to
by a pointer

A cast shall
not remove any
const or volatile
qualification from
the type pointed to
by a pointer.

Extended to all
conversions.

Rule
11.9

Required Readability The macro NULL
shall be the only
permitted form
of integer null
pointer constant

The macro NULL
shall be the only
permitted form of
integer null pointer
constant.

Extended to all zero
constants.

 MISRA C:2012 Coding Directives and Rules

12-81

Expressions

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
12.1

Advisory Advisory The precedence of
operators within
expressions should
be made explicit

Operand of logical
%s is not a primary
expression. The
precedence of
operators within
expressions should
be made explicit.

Rule
12.2

Required Required The right hand
operand of a shift
operator shall lie
in the range zero
to one less than
the width in bits of
the essential type
of the left hand
operand

Shift amount is
bigger than XX.
Shift amount is
negative. The right
hand operand of a
shift operator shall
lie in the range zero
to one less than
the width in bits of
the essential type
of the left hand
operand.

The numbers that
are manipulated
in preprocessing
directives are 64 bits
wide. The valid shift
range is between 0 and
63. This check is also
extended onto bitfields
with the field width or
the width of the base
type when it is within a
complex expression.

Rule
12.3

Advisory Advisory The comma
operator should
not be used

The comma
operator should not
be used.

Rule
12.4

Advisory Advisory Evaluation
of constant
expressions
should not lead to
unsigned integer
wrap-around

Evaluation
of constant
expressions
should not lead to
unsigned integer
wrap-around.

12 Coding Rule Sets and Concepts

12-82

Side Effects

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
13.1

Required Required Initializer lists
shall not contain
persistent side
effects

Initializer lists
shall not contain
persistent side
effects.

All function calls are
interpreted as side
effects.

Rule
13.2

Required Required The value of an
expression and
its persistent side
effects shall be
the same under
all permitted
evaluation orders

The value of
'XX' depends
on the order of
evaluation. The
value of volatile
'XX' depends on the
order of evaluation
because of multiple
accesses.

The expression is a
simple expression of
symbols. Rule 13.2
assumes that the
comma operator is not
used (rule 12.3).

Rule
13.3

Advisory Readability A full expression
containing an
increment (++)
or decrement (--)
operator should
have no other
potential side
effects other than
that caused by
the increment
or decrement
operator

A full expression
containing an
increment (++)
or decrement (--)
operator should
have no other
potential side
effects other than
that caused by
the increment
or decrement
operator.

Warning when ++ or --
operators are not used
by themselves.

Rule
13.4

Advisory Advisory The result of
an assignment
operator should
not be used

The result of
an assignment
operator should not
be used.

Rule
13.5

Required Required The right hand
operand of a
logical && or ||
operator shall not

The right hand
operand of a &&
operator shall not
contain side effects.
The right hand

No warning on volatile
accesses. All function
calls are seen as side
effects.

 MISRA C:2012 Coding Directives and Rules

12-83

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

contain persistent
side effects

operand of a ||
operator shall not
contain side effects.

Rule
13.6

Mandatory Mandatory The operand
of the sizeof
operator shall
not contain any
expression which
has potential side
effects

The operand of
the sizeof operator
shall not contain
any expression
which has potential
side effects.

No warning on volatile
accesses.

Control Statement Expressions

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace Specification

Rule
14.1

Required Advisory A loop
counter
shall
not have
essentially
floating
type.

A loop counter shall
not have essentially
floating type.

If the 'for' index is a
variable symbol, it is
checked that it is not a
float.

Rule
14.2

Required Readability A for
loop shall
be well-
formed.

1st expression should
be an assignment. The
following kinds of for
loops are allowed:

• all three expressions
shall be present;

• the 2nd and 3rd
expressions shall be
present with prior
initialization of the
loop counter;

• all three expressions
shall be empty for

Checks if:

• The for loop index (V)
is a variable symbol.

• V is the last assigned
variable in the first
expression (if present).

• If the first expression
exists, it contains an
assignment of V.

• If the second
expression exists, it is a
comparison of V.

12 Coding Rule Sets and Concepts

12-84

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace Specification

a deliberate infinite
loop

3rd expression should
be an assignment of a
loop counter.

3rd expression :
assigned variable
should be the loop
counter (XX).

3rd expression should
be an assignment of
loop counter (XX) only.

2nd expression should
contain a comparison
with loop counter (XX).

Loop counter (XX)
should not be modified
in the body of the loop.

Bad type for loop
counter (XX).

• If the third expression
exists, it is an
assignment of V.

• There are direct
assignments of the for
loop index.

 MISRA C:2012 Coding Directives and Rules

12-85

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace Specification

Rule
14.3

Required Required Controlling
expressions
shall not be
invariant.

Boolean operations
whose results are
invariant shall not be
permitted. Expression
is always true. Boolean
operations whose
results are invariant
shall not be permitted.
Expression is always
false. Controlling
expressions shall not be
invariant.

Some of the violations are
found by Polyspace Bug
Finder as Dead Code and
Useless If checkers.

No violations from dead
code checks in Polyspace
Code Prover. Because Bug
Finder and Code Prover
check this coding rule
differently, the analyses
can produce different
results.

Rule
14.4

Required Advisory The
controlling
expression
of an if
statement
and the
controlling
expression
of an
iteration-
statement
shall have
essentially
Boolean
type.

The controlling
expression of an if
statement and the
controlling expression
of an iteration-
statement shall have
essentially Boolean
type

No warning is generated
for integer constants, for
example. if(2).

The use of the option -
boolean-types can
increase or decrease the
number of warnings
generated.

Control Flow

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace
Specification

Rule
15.1

Advisory Advisory The goto
statement should
not be used

The goto statement should not
be used.

12 Coding Rule Sets and Concepts

12-86

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace
Specification

Rule
15.2

Required Advisory The goto
statement shall
jump to a label
declared later in
the same function

The goto statement shall jump
to a label declared later in the
same function.

Rule
15.3

Required Advisory Any label
referenced by a
goto statement
shall be declared
in the same block,
or in any block
enclosing the goto
statement

Any label referenced by a goto
statement shall be declared in
the same block, or in any block
enclosing the goto statement.

Rule
15.4

Advisory Advisory There should be
no more than
one break or goto
statement used
to terminate
any iteration
statement

There should be no more than
one break or goto statement
used to terminate any iteration
statement.

Rule
15.5

Advisory Advisory A function should
have a single point
of exit at the end

A function should have a single
point of exit at the end.

 MISRA C:2012 Coding Directives and Rules

12-87

Rule
Number

Category AGC
Category

Definition Messages in report file Polyspace
Specification

Rule
15.6

Required Required The body of
an iteration-
statement or
a selection-
statement shall
be a compound-
statement

The else keyword shall be
followed by either a compound
statement, or another if
statement.

An if (expression) construct
shall be followed by a compound
statement.

The statement forming the body
of a while statement shall be a
compound statement.

The statement forming the body
of a do ... while statement shall
be a compound statement.

The statement forming the body
of a for statement shall be a
compound statement.

The statement forming the body
of a switch statement shall be a
compound statement.

Rule
15.7

Required Readability All if … else if
constructs shall be
terminated with
an else statement

All if … else if constructs shall
be terminated with an else
statement.

Switch Statements

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
16.1

Required Advisory All switch
statements shall
be well-formed

Initializers shall
not be used in
switch clauses.

All messages in report
file begin with "MISRA-
C switch statements
syntax normative
restriction."

12 Coding Rule Sets and Concepts

12-88

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

The child
statement of
a switch shall
be a compound
statement.

All switch clauses
shall appear at the
same level.

A switch clause
shall only contain
switch labels and
switch clauses, and
no other code.

A switch statement
shall only contain
switch labels and
switch clauses, and
no other code.

Rule
16.2

Required Advisory A switch label
shall only be used
when the most
closely-enclosing
compound
statement is the
body of a switch
statement

A switch label
shall only be used
when the most
closely-enclosing
compound
statement is the
body of a switch
statement.

Rule
16.3

Required Advisory An unconditional
break statement
shall terminate
every switch-
clause

An unconditional
break statement
shall terminate
every switch-
clause.

Warning for each
noncompliant case
clause.

 MISRA C:2012 Coding Directives and Rules

12-89

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
16.4

Required Advisory Every switch
statement shall
have a default
label

Every switch
statement shall
have a default
label.

Rule
16.5

Required Advisory A default label
shall appear as
either the first or
the last switch
label of a switch
statement

A default label
shall appear as
either the first or
the last switch
label of a switch
statement.

Rule
16.6

Required Advisory Every switch
statement shall
have at least two
switch-clauses

Every switch
statement shall
have at least two
switch-clauses.

Rule
16.7

Required Advisory A switch-
expression
shall not have
essentially
Boolean type

A switch-expression
shall not have
essentially Boolean
type.

The use of the option -
boolean-types can
increase the number of
warnings generated.

Function

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
17.1

Required Required The features of
<starg.h> shall
not be used.

The features of
<starg.h> shall not
be used.

Rule
17.2

Required Required Functions
shall not call
themselves,
either directly or
indirectly

Function XX shall
not call itself
either directly
or indirectly.
Functions shall not
call themselves,
either directly
or indirectly.
Function XX is

Found by Polyspace
software. The call
graph in the Results
Manager perspective
of Polyspace Code
Prover shows a
visual representation
of a function’s
calls.Polyspace also

12 Coding Rule Sets and Concepts

12-90

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

called indirectly by
YY.

partially checks this
guideline during the
compilation phase.

Rule
17.3

Mandatory Mandatory A function shall
not be declared
implicitly

Function 'XX' has
no complete visible
prototype at call.

Prototype visible at call
must be complete.

Rule
17.4

Mandatory Mandatory All exit paths from
a function with
non-void return
type shall have
an explicit return
statement with an
expression

Missing return
value for non-void
function 'XX'.

Rule
17.6

Mandatory Mandatory The declaration
of an array
parameter shall
not contain the
static keyword
between the []

The declaration of
an array parameter
shall not contain
the static keyword
between the [].

Rule
17.7

Required Readability The value
returned by a
function having
non-void return
type shall be used

The value returned
by a function
having non-void
return type shall be
used.

Pointers and Arrays

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
18.1

Required Required A pointer resulting
from arithmetic on
a pointer operand
shall address an
element of the
same array as that
pointer operand

A pointer resulting
from arithmetic on
a pointer operand
shall address an
element of the
same array as that
pointer operand.

Found during the
Polyspace analysis as
(Code Prover) Illegally
dereferenced pointer
checks and Out-of-
bounds array checks

 MISRA C:2012 Coding Directives and Rules

12-91

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

and (Bug Finder) Out-
of-bound defects.

Rule
18.2

Required Required Subtraction
between pointers
shall only be
applied to pointers
that address
elements of the
same array

Subtraction
between pointers
shall only be
applied to pointers
that address
elements of the
same array.

Rule
18.3

Required Required The relational
operators >, >=,
< and <= shall
not be applied to
objects of pointer
type except where
they point into the
same object

The relational
operators >, >=, <
and <= shall not be
applied to objects
of pointer type
except where they
point into the same
object.

Rule
18.4

Advisory Advisory The +, -, += and -
= operators should
not be applied to
an expression of
pointer type

The +, -, += and -
= operators should
not be applied to
an expression of
pointer type.

Warning on operations
on pointers. (p+I, I
+p and p-I. Where p
is a pointer and I an
integer).

Rule
18.5

Advisory Readability Declarations
should contain
no more than two
levels of pointer
nesting

Declarations should
contain no more
than two levels of
pointer nesting.

Rule
18.6

Required Required The address of
an object with
automatic storage
shall not be copied
to another object
that persists after
the first object has
ceased to exist

The address of
an object with
automatic storage
shall not be copied
to another object
that persists after
the first object has
ceased to exist.

Warning when
assigning address
to a global variable,
returning a local
variable address or a
parameter address.

12 Coding Rule Sets and Concepts

12-92

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
18.7

Required Required Flexible array
members shall not
be declared

Flexible array
members shall not
be declared.

Rule
18.8

Required Required Variable-length
array types shall
not be used

Variable-length
array types shall
not be used.

Overlapping Storage

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
19.1

Mandatory Mandatory An object shall
not be assigned
or copied to an
overlapping object

An object shall
not be assigned
or copied to an
overlapping object.

Destination
and source of
XX overlap,
the behavior is
undefined.

Rule
19.2

Advisory Advisory The union
keyword should
not be used

The union keyword
should not be used.

Preprocessing Directives

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
20.1

Advisory Advisory #include directives
should only be
preceded by
preprocessor
directives or
comments

#include directives
should only be
preceded by
preprocessor
directives or
comments.

A message is displayed
when a #include
directive is preceded
by text other than
preprocessor directives,
comments, spaces or
"new lines".

 MISRA C:2012 Coding Directives and Rules

12-93

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
20.2

Required Required The', "or
\characters
and the /*
or //character
sequences shall
not occur in a
header file name

The', "or
\characters and
the /* or //character
sequences shall not
occur in a header
file name.

A message is displayed
on the characters ',
\, ", or /* between <
and > in #include
<filename>.

A message is displayed
on characters ',
\, or /* between "
and " in #include
"filename".

Rule
20.3

Required Required The #include
directive shall be
followed by either
a <filename>
or \"filename\"
sequence

• ‘#include'
expects
\"FILENAME
\" or
<FILENAME>

• ‘#include_next'
expects
\"FILENAME
\" or
<FILENAME>

• ‘#include' does
not expect string
concatenation.

• ‘#include_next'
does not
expect string
concatenation.

Rule
20.4

Required Required A macro shall not
be defined with
the same name as
a keyword

The macro 'XX'
shall not be
redefined.

The macro 'XX'
shall not be
undefined.

12 Coding Rule Sets and Concepts

12-94

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
20.5

Advisory Readability #undef should not
be used

#undef shall not be
used.

Rule
20.6

Required Required Tokens that
look like a
preprocessing
directive shall not
occur within a
macro argument

Macro argument
shall not look like
a preprocessing
directive.

This rule is detected
as violated when the
'#' character appears
in a macro argument
(outside a string or
character constant).

Rule
20.7

Required Required Expressions
resulting from
the expansion of
macro parameters
shall be enclosed
in parentheses

Expanded macro
parameter 'XX'
shall be enclosed in
parentheses.

Rule
20.8

Required Advisory The controlling
expression of
a #if or #elif
preprocessing
directive shall
evaluate to 0 or 1

The controlling
expression of
a #if or #elif
preprocessing
directive shall
evaluate to 0 or 1.

Rule
20.9

Required Required All identifiers
used in the
controlling
expression of #if or
#elif preprocessing
directives shall be
#define’d before
evaluation

'XX*s' is not
defined.

Rule
20.10

Advisory Advisory The# and ##
preprocessor
operators should
not be used

The # and ##
preprocessor
operators should
not be used.

 MISRA C:2012 Coding Directives and Rules

12-95

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
20.11

Required Required A macro
parameter
immediately
following a #
operator shall not
immediately be
followed by a ##
operator

The ##
preprocessor
operator shall
not follow a
macro parameter
following a #
preprocessor
operator.

Rule
20.12

Required Required A macro
parameter used
as an operand
to the # or ##
operators, which
is itself subject
to further macro
replacement, shall
only be used as an
operand to these
operators

Expanded macro
parameter 'XX' is
also an operand of
'YY' operator.

Rule
20.13

Required Required A line whose
first token is #
shall be a valid
preprocessing
directive

Directive is not
syntactically
meaningful.

12 Coding Rule Sets and Concepts

12-96

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
20.14

Required Required All #else, #elif
and #endif
preprocessor
directives shall
reside in the same
file as the #if,
#ifdef or #ifndef
directive to which
they are related

• ‘#else' not
within a
conditional.

• ‘#elsif' not
within a
conditional.

• ‘#endif' not
within a
conditional.
unterminated
conditional
directive.

Standard Libraries

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
21.1

Required Required #define and
#undef shall
not be used on a
reserved identifier
or reserved macro
name

The macro 'XX'
shall not be
redefined.

The macro 'XX'
shall not be
undefined.

The macro 'XX'
shall not be
defined.

Rule
21.2

Required Required A reserved
identifier or macro
name shall not be
declared

Identifier 'XX' shall
not be reused.

In case a macro whose
name corresponds to
a standard library
macro, object, or
function is defined, the
rule that is detected
as violated is 21.1.
Tentative definitions

 MISRA C:2012 Coding Directives and Rules

12-97

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

are considered as
definitions.

Rule
21.3

Required Required The memory
allocation and
deallocation
functions of
<stdlib.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the dynamic
heap memory allocation
functions are actually
macros, and the macros
are expanded in the
code, this rule is
detected as violated. It
is assumed that rule
21.2 is not violated.

Rule
21.4

Required Required The standard
header file
<setjmp.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the longjmp
function is actually a
macro, and the macro
is expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

Rule
21.5

Required Required The standard
header file
<signal.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case some of the
signal functions are
actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

12 Coding Rule Sets and Concepts

12-98

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
21.6

Required Required The Standard
Library input/
output functions
shall not be used

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the input/
output library functions
are actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

Rule
21.7

Required Required The atof, atoi, atol,
and atoll functions
of <stdlib.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the atof, atoi,
atol, and atoll functions
are actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

Rule
21.8

Required Required The library
functions abort,
exit, getenv
and system of
<stdlib.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the abort, exit,
getenv, and system
functions are actually
macros, and the macros
are expanded in the
code, this rule is
detected as violated. It
is assumed that rule
21.2 is not violated.

Rule
21.9

Required Required The library
functions bsearch
and qsort of
<stdlib.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the bsearch
and qsort functions
are actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

 MISRA C:2012 Coding Directives and Rules

12-99

Rule
Number

Category AGC
Category

Definition Messages in report
file

Polyspace Specification

Rule
21.10

Required Required The Standard
Library time and
date functions
shall not be used

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case the time
handling functions
are actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

Rule
21.11

Required Required The standard
header file
<tgmath.h> shall
not be used.

The macro '<name>
shall not be used.

Identifier XX
should not be used.

In case some of the type
generic math functions
are actually macros,
and the macros are
expanded in the code,
this rule is detected as
violated. It is assumed
that rule 21.2 is not
violated.

MISRA C:2012 Guidelines Not Checked

The Polyspace coding rules checker does not check the following MISRA C:2012 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. These guidelines concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

Directive
Number

Category AGC Category Definition

Dir 1.1 Required Required Any implementation-defined behavior on which
the output of the program depends shall be
documented and understood

Dir 3.1 Required Required All code shall be traceable to documented
requirements

Dir 4.2 Advisory Advisory All usage of assembly language should be
documented

12 Coding Rule Sets and Concepts

12-100

Directive
Number

Category AGC Category Definition

Dir 4.4 Advisory Advisory Sections of code should not be “commented out”
Dir 4.7 Required Required If a function returns error information, then that

error information shall be tested
Dir 2.1 Required Required All source files shall compile without any

compilation errors
Dir 4.12 Required Required Dynamic memory allocation shall not be used
Dir 4.13 Advisory Advisory Functions which are designed to provide

operations on a resource should be called in an
appropriate sequence

Dir 4.5 Advisory Readability Identifiers in the same name space with
overlapping visibility should be typographically
unambiguous

Dir 4.8 Advisory Advisory If a pointer to a structure or union is never
dereferenced within a translation unit, then the
implementation of the object should be hidden

Rule 17.5 Advisory Readability The function argument corresponding to a
parameter declared to have an array type shall
have an appropriate number of elements

Rule 17.8 Advisory Readability A function parameter should not be modified
Rule 2.6 Advisory Readability A function should not contain unused label

declarations
Rule 2.7 Advisory Readability There should be no unused parameters in

functions
Rule 21.12 Advisory Advisory The exception handling features of <fenv.h>

should not be used.
Rule 22.1 Required Required All resources obtained dynamically by means of

Standard Library functions shall be explicitly
released

Rule 22.2 Mandatory Mandatory A block of memory shall only be freed if it
was allocated by means of a Standard Library
function

 MISRA C:2012 Coding Directives and Rules

12-101

Directive
Number

Category AGC Category Definition

Rule 22.3 Required Required The same file shall not be open for read and write
access at the same time on different streams

Rule 22.4 Mandatory Mandatory There shall be no attempt to write to a stream
which has been opened as read only

Rule 22.5 Mandatory Mandatory A pointer to a FILE object shall not be
dereferenced

Rule 22.6 Mandatory Mandatory The value of a pointer to a FILE shall not be used
after the associated stream has been closed

12 Coding Rule Sets and Concepts

12-102

Polyspace MISRA C++ Checker

The Polyspace MISRA C++ checker helps you comply with theMISRA C++:2008 coding
standard.5

When MISRA C++ rules are violated, the Polyspace MISRA C++ checker enables
Polyspace software to provide messages with information about the rule violations. Most
messages are reported during the compile phase of an analysis. The MISRA C++ checker
can check 185 of the 228 MISRA C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 12-103.

Note: The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems." For more information on these coding
standards, see http://www.misra-cpp.com.

5. MISRA is a registered trademark of MISRA Ltd., held on behalf of the MISRA Consortium.

http://www.misra-cpp.com/

 Software Quality Objective Subsets (C++)

12-103

Software Quality Objective Subsets (C++)
In this section...

“SQO Subset 1 – Direct Impact on Selectivity” on page 12-103
“SQO Subset 2 – Indirect Impact on Selectivity” on page 12-105

SQO Subset 1 – Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your results.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.

12 Coding Rule Sets and Concepts

12-104

MISRA C++ Rule Description

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

 Software Quality Objective Subsets (C++)

12-105

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used in place of the basic
numerical types.

3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the

12 Coding Rule Sets and Concepts

12-106

MISRA C++ Rule Description

equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

 Software Quality Objective Subsets (C++)

12-107

MISRA C++ Rule Description

5-2-11 The comma operator, && operator and the || operator shall not be
overloaded.

5-3-2 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for

equality or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.

12 Coding Rule Sets and Concepts

12-108

MISRA C++ Rule Description

7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an

explicit return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

 Software Quality Objective Subsets (C++)

12-109

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

12 Coding Rule Sets and Concepts

12-110

MISRA C++ Coding Rules

In this section...

“Supported MISRA C++ Coding Rules” on page 12-110
“MISRA C++ Rules Not Checked” on page 12-129

Supported MISRA C++ Coding Rules

• “Language Independent Issues” on page 12-111
• “General” on page 12-111
• “Lexical Conventions” on page 12-111
• “Basic Concepts” on page 12-113
• “Standard Conversions” on page 12-114
• “Expressions” on page 12-114
• “Statements” on page 12-118
• “Declarations” on page 12-120
• “Declarators” on page 12-121
• “Classes” on page 12-122
• “Derived Classes” on page 12-123
• “Member Access Control” on page 12-123
• “Special Member Functions” on page 12-123
• “Templates” on page 12-124
• “Exception Handling” on page 12-125
• “Preprocessing Directives” on page 12-126
• “Library Introduction” on page 12-128
• “Language Support Library” on page 12-128
• “Diagnostic Library” on page 12-128
• “Input/output Library” on page 12-129

 MISRA C++ Coding Rules

12-111

Language Independent Issues

N. MISRA Definition Polyspace Specification

0-1-1 A project shall not contain unreachable
code.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

0-1-2 A project shall not contain infeasible paths.
0-1-7 The value returned by a function having

a non- void return type that is not an
overloaded operator shall always be used.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

0-1-10 Every defined function shall be called at
least once.

Detects if static functions are not called
in their translation unit. Other cases are
detected by the software.

General

N. MISRA Definition Polyspace Specification

1-0-1 All code shall conform to ISO/IEC
14882:2003 "The C++ Standard
Incorporating Technical Corrigendum 1".

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

Lexical Conventions

N. MISRA Definition Polyspace Specification

2-3-1 Trigraphs shall not be used.
2-5-1 Digraphs should not be used.
2-7-1 The character sequence /* shall not be used

within a C-style comment.
This rule cannot be annotated in the source
code.

2-10-1 Different identifiers shall be
typographically unambiguous.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-2 Identifiers declared in an inner scope shall
not hide an identifier declared in an outer
scope.

No detection for logical scopes: fields or
member functions hiding outer scopes
identifiers or hiding ancestors members.

12 Coding Rule Sets and Concepts

12-112

N. MISRA Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-3 A typedef name (including qualification, if
any) shall be a unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-4 A class, union or enum name (including
qualification, if any) shall be a unique
identifier.

No detection across namespaces.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-5 The identifier name of a non-member object
or function with static storage duration
should not be reused.

For functions the detection is only on the
definition where there is a declaration.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-10-6 If an identifier refers to a type, it shall not
also refer to an object or a function in the
same scope.

If the identifier is a function and the
function is both declared and defined then
the violation is reported only once.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-13-1 Only those escape sequences that are
defined in ISO/IEC 14882:2003 shall be
used.

2-13-2 Octal constants (other than zero) and octal
escape sequences (other than "\0") shall not
be used.

2-13-3 A "U" suffix shall be applied to all octal or
hexadecimal integer literals of unsigned
type.

2-13-4 Literal suffixes shall be upper case.

 MISRA C++ Coding Rules

12-113

N. MISRA Definition Polyspace Specification

2-13-5 Narrow and wide string literals shall not be
concatenated.

Basic Concepts

N. MISRA Definition Polyspace Specification

3-1-1 It shall be possible to include any header
file in multiple translation units without
violating the One Definition Rule.

3-1-2 Functions shall not be declared at block
scope.

3-1-3 When an array is declared, its size shall
either be stated explicitly or defined
implicitly by initialization.

3-2-1 All declarations of an object or function
shall have compatible types.

3-2-2 The One Definition Rule shall not be
violated.

Report type, template, and inline function
defined in source file

3-2-3 A type, object or function that is used in
multiple translation units shall be declared
in one and only one file.

3-2-4 An identifier with external linkage shall
have exactly one definition.

3-3-1 Objects or functions with external linkage
shall be declared in a header file.

3-3-2 If a function has internal linkage then all
re-declarations shall include the static
storage class specifier.

3-4-1 An identifier declared to be an object
or type shall be defined in a block that
minimizes its visibility.

3-9-1 The types used for an object, a function
return type, or a function parameter

Comparison is done between current
declaration and last seen declaration.

12 Coding Rule Sets and Concepts

12-114

N. MISRA Definition Polyspace Specification

shall be token-for-token identical in all
declarations and re-declarations.

3-9-2 typedefs that indicate size and signedness
should be used in place of the basic
numerical types.

No detection in non-instantiated templates.

3-9-3 The underlying bit representations of
floating-point values shall not be used.

Standard Conversions

N. MISRA Definition Polyspace Specification

4-5-1 Expressions with type bool shall not be
used as operands to built-in operators other
than the assignment operator =, the logical
operators &&, ||, !, the equality operators
== and !=, the unary & operator, and the
conditional operator.

4-5-2 Expressions with type enum shall not be
used as operands to built- in operators
other than the subscript operator [],
the assignment operator =, the equality
operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and
wchar_t shall not be used as operands
to built-in operators other than the
assignment operator =, the equality
operators == and !=, and the unary &
operator. N

Expressions

N. MISRA Definition Polyspace Specification

5-0-1 The value of an expression shall be the
same under any order of evaluation that
the standard permits.

 MISRA C++ Coding Rules

12-115

N. MISRA Definition Polyspace Specification

5-0-2 Limited dependence should be placed on C+
+ operator precedence rules in expressions.

5-0-3 A cvalue expression shall not be implicitly
converted to a different underlying type.

Assumes that ptrdiff_t is signed integer

5-0-4 An implicit integral conversion shall not
change the signedness of the underlying
type.

Assumes that ptrdiff_t is signed integer

If the conversion is to a narrower integer
with a different sign then MISRA C++ 5-0-4
takes precedence over MISRA C++ 5-0-6.

5-0-5 There shall be no implicit floating-integral
conversions.

This rule takes precedence over 5-0-4 and
5-0-6 if they apply at the same time.

5-0-6 An implicit integral or floating-point
conversion shall not reduce the size of the
underlying type.

If the conversion is to a narrower integer
with a different sign then MISRA C++ 5-0-4
takes precedence over MISRA C++ 5-0-6.

5-0-7 There shall be no explicit floating-integral
conversions of a cvalue expression.

5-0-8 An explicit integral or floating-point
conversion shall not increase the size of the
underlying type of a cvalue expression.

5-0-9 An explicit integral conversion shall not
change the signedness of the underlying
type of a cvalue expression.

5-0-10 If the bitwise operators ~ and << are
applied to an operand with an underlying
type of unsigned char or unsigned short,
the result shall be immediately cast to the
underlying type of the operand.

5-0-11 The plain char type shall only be used for
the storage and use of character values.

For numeric data, use a type which has
explicit signedness.

5-0-12 Signed char and unsigned char type shall
only be used for the storage and use of
numeric values.

5-0-14 The first operand of a conditional-operator
shall have type bool.

12 Coding Rule Sets and Concepts

12-116

N. MISRA Definition Polyspace Specification

5-0-15 Array indexing shall be the only form of
pointer arithmetic.

Warning on operations on pointers. (p+I,
I+p and p-I, where p is a pointer and I an
integer, p[i] accepted).

5-0-18 >, >=, <, <= shall not be applied to objects of
pointer type, except where they point to the
same array.

Report when relational operator are used
on pointers types (casts ignored).

5-0-19 The declaration of objects shall contain no
more than two levels of pointer indirection.

5-0-20 Non-constant operands to a binary bitwise
operator shall have the same underlying
type.

5-0-21 Bitwise operators shall only be applied to
operands of unsigned underlying type.

5-2-1 Each operand of a logical && or || shall be
a postfix - expression.

During preprocessing, violations of this
rule are detected on the expressions
in #if directives. Allowed exception on
associativity (a && b && c), (a || b || c).

5-2-2 A pointer to a virtual base class shall only
be cast to a pointer to a derived class by
means of dynamic_cast.

5-2-3 Casts from a base class to a derived class
should not be performed on polymorphic
types.

5-2-4 C-style casts (other than void casts) and
functional notation casts (other than
explicit constructor calls) shall not be used.

5-2-5 A cast shall not remove any const or
volatile qualification from the type of a
pointer or reference.

5-2-6 A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of operand and
target are identical.

 MISRA C++ Coding Rules

12-117

N. MISRA Definition Polyspace Specification

5-2-7 An object with pointer type shall not be
converted to an unrelated pointer type,
either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct object
and pointer to type of the first member
of the struct type. Indirect conversions
through non-pointer type (e.g. int) are not
detected."

5-2-8 An object with integer type or pointer to
void type shall not be converted to an object
with pointer type.

Exception on zero constants. Objects with
pointer type include objects with pointer to
function type.

5-2-9 A cast should not convert a pointer type to
an integral type.

5-2-10 The increment (++) and decrement (--)
operators should not be mixed with other
operators in an expression.

5-2-11 The comma operator, && operator and the
|| operator shall not be overloaded.

5-2-12 An identifier with array type passed as
a function argument shall not decay to a
pointer.

5-3-1 Each operand of the ! operator, the logical
&& or the logical || operators shall have
type bool.

5-3-2 The unary minus operator shall not be
applied to an expression whose underlying
type is unsigned.

5-3-3 The unary & operator shall not be
overloaded.

5-3-4 Evaluation of the operand to the sizeof
operator shall not contain side effects.

No warning on volatile accesses and
function calls

5-8-1 The right hand operand of a shift operator
shall lie between zero and one less than the
width in bits of the underlying type of the
left hand operand.

12 Coding Rule Sets and Concepts

12-118

N. MISRA Definition Polyspace Specification

5-14-1 The right hand operand of a logical && or
|| operator shall not contain side effects.

No warning on volatile accesses and
function calls.

5-18-1 The comma operator shall not be used.
5-19-1 Evaluation of constant unsigned integer

expressions should not lead to wrap-
around.

Statements

N. MISRA Definition Polyspace Specification

6-2-1 Assignment operators shall not be used in
sub-expressions.

6-2-2 Floating-point expressions shall not be
directly or indirectly tested for equality or
inequality.

6-2-3 Before preprocessing, a null statement
shall only occur on a line by itself; it may be
followed by a comment, provided that the
first character following the null statement
is a white - space character.

6-3-1 The statement forming the body of a
switch, while, do ... while or for statement
shall be a compound statement.

6-4-1 An if (condition) construct shall be
followed by a compound statement. The
else keyword shall be followed by either
a compound statement, or another if
statement.

6-4-2 All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last if is in
the block of the last else (same behavior
as JSF, stricter than MISRA C).

Example: "if … else { if …{}}" raises the
rule

 MISRA C++ Coding Rules

12-119

N. MISRA Definition Polyspace Specification

6-4-3 A switch statement shall be a well-formed
switch statement.

Return statements are considered as jump
statements.

6-4-4 A switch-label shall only be used when the
most closely-enclosing compound statement
is the body of a switch statement.

6-4-5 An unconditional throw or break statement
shall terminate every non - empty switch-
clause.

6-4-6 The final clause of a switch statement shall
be the default-clause.

6-4-7 The condition of a switch statement shall
not have bool type.

6-4-8 Every switch statement shall have at least
one case-clause.

6-5-1 A for loop shall contain a single loop-
counter which shall not have floating type.

6-5-2 If loop-counter is not modified by -- or +
+, then, within condition, the loop-counter
shall only be used as an operand to <=, <, >
or >=.

6-5-3 The loop-counter shall not be modified
within condition or statement.

Detect only direct assignments if for_index
is known (see 6-5-1).

6-5-4 The loop-counter shall be modified by one
of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

6-5-5 A loop-control-variable other than the
loop-counter shall not be modified within
condition or expression.

6-5-6 A loop-control-variable other than the loop-
counter which is modified in statement
shall have type bool.

12 Coding Rule Sets and Concepts

12-120

N. MISRA Definition Polyspace Specification

6-6-1 Any label referenced by a goto statement
shall be declared in the same block, or in a
block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label
declared later in the same function body.

6-6-3 The continue statement shall only be used
within a well-formed for loop.

Assumes 6.5.1 to 6.5.6: so it is implemented
only for supported 6_5_x rules.

6-6-4 For any iteration statement there shall be
no more than one break or goto statement
used for loop termination.

6-6-5 A function shall have a single point of exit
at the end of the function.

At most one return not necessarily as last
statement for void functions.

Declarations

N. MISRA Definition Polyspace Specification

7-3-1 The global namespace shall only contain
main, namespace declarations and extern
"C" declarations.

7-3-2 The identifier main shall not be used for
a function other than the global function
main.

7-3-3 There shall be no unnamed namespaces in
header files.

7-3-4 using-directives shall not be used.
7-3-5 Multiple declarations for an identifier in

the same namespace shall not straddle a
using-declaration for that identifier.

7-3-6 using-directives and using-declarations
(excluding class scope or function scope
using-declarations) shall not be used in
header files.

 MISRA C++ Coding Rules

12-121

N. MISRA Definition Polyspace Specification

7-4-2 Assembler instructions shall only be
introduced using the asm declaration.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

7-4-3 Assembly language shall be encapsulated
and isolated.

7-5-1 A function shall not return a reference or a
pointer to an automatic variable (including
parameters), defined within the function.

7-5-2 The address of an object with automatic
storage shall not be assigned to another
object that may persist after the first object
has ceased to exist.

7-5-3 A function shall not return a reference or
a pointer to a parameter that is passed by
reference or const reference.

7-5-4 Functions should not call themselves,
either directly or indirectly.

Declarators

N. MISRA Definition Polyspace Specification

8-0-1 An init-declarator-list or a member-
declarator-list shall consist of a single
init-declarator or member-declarator
respectively.

8-3-1 Parameters in an overriding virtual
function shall either use the same default
arguments as the function they override,
or else shall not specify any default
arguments.

8-4-1 Functions shall not be defined using the
ellipsis notation.

8-4-2 The identifiers used for the parameters
in a re-declaration of a function shall be
identical to those in the declaration.

12 Coding Rule Sets and Concepts

12-122

N. MISRA Definition Polyspace Specification

8-4-3 All exit paths from a function with non-
void return type shall have an explicit
return statement with an expression.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

8-4-4 A function identifier shall either be used to
call the function or it shall be preceded by
&.

8-5-1 All variables shall have a defined value
before they are used.

Non-initialized variable in results and error
messages for obvious cases

8-5-2 Braces shall be used to indicate and match
the structure in the non- zero initialization
of arrays and structures.

8-5-3 In an enumerator list, the = construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Classes

N. MISRA Definition Polyspace Specification

9-3-1 const member functions shall not return
non-const pointers or references to class-
data.

Class-data for a class is restricted to all
non-static member data.

9-3-2 Member functions shall not return non-
const handles to class-data.

Class-data for a class is restricted to all
non-static member data.

9-5-1 Unions shall not be used.
9-6-2 Bit-fields shall be either bool type or an

explicitly unsigned or signed integral type.

9-6-3 Bit-fields shall not have enum type.
9-6-4 Named bit-fields with signed integer type

shall have a length of more than one bit.

 MISRA C++ Coding Rules

12-123

Derived Classes

N. MISRA Definition Polyspace Specification

10-1-1 Classes should not be derived from virtual
bases.

10-1-2 A base class shall only be declared virtual if
it is used in a diamond hierarchy.

Assumes 10.1.1 not required

10-1-3 An accessible base class shall not be
both virtual and nonvirtual in the same
hierarchy.

10-2-1 All accessible entity names within a
multiple inheritance hierarchy should be
unique.

No detection between entities of different
kinds (member functions against data
members, …).

10-3-1 There shall be no more than one definition
of each virtual function on each path
through the inheritance hierarchy.

Member functions that are virtual by
inheritance are also detected.

10-3-2 Each overriding virtual function shall be
declared with the virtual keyword.

10-3-3 A virtual function shall only be overridden
by a pure virtual function if it is itself
declared as pure virtual.

Member Access Control

N. MISRA Definition Polyspace Specification

11-0-1 Member data in non- POD class types shall
be private.

Special Member Functions

N. MISRA Definition Polyspace Specification

12-1-1 An object's dynamic type shall not be
used from the body of its constructor or
destructor.

12-1-2 All constructors of a class should explicitly
call a constructor for all of its immediate
base classes and all virtual base classes.

12 Coding Rule Sets and Concepts

12-124

N. MISRA Definition Polyspace Specification

12-1-3 All constructors that are callable with a
single argument of fundamental type shall
be declared explicit.

12-8-1 A copy constructor shall only initialize its
base classes and the non- static members of
the class of which it is a member.

12-8-2 The copy assignment operator shall be
declared protected or private in an abstract
class.

Templates

N. MISRA Definition Polyspace Specification

14-5-2 A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a generic
parameter.

14-5-3 A copy assignment operator shall be
declared when there is a template
assignment operator with a parameter that
is a generic parameter.

14-6-1 In a class template with a dependent
base, any name that may be found in that
dependent base shall be referred to using a
qualified-id or this->

14-6-2 The function chosen by overload resolution
shall resolve to a function declared
previously in the translation unit.

14-7-3 All partial and explicit specializations for
a template shall be declared in the same
file as the declaration of their primary
template.

14-8-1 Overloaded function templates shall not be
explicitly specialized.

All specializations of overloaded templates
are rejected even if overloading occurs after
the call.

 MISRA C++ Coding Rules

12-125

N. MISRA Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

14-8-2 The viable function set for a function
call should either contain no function
specializations, or only contain function
specializations.

Exception Handling

N. MISRA Definition Polyspace Specification

15-0-2 An exception object should not have pointer
type.

NULL not detected (see 15-1-2).

15-0-3 Control shall not be transferred into a
try or catch block using a goto or a switch
statement.

15-1-2 NULL shall not be thrown explicitly.
15-1-3 An empty throw (throw;) shall only be used

in the compound- statement of a catch
handler.

15-3-2 There should be at least one exception
handler to catch all otherwise unhandled
exceptions.

Detect that there is no try/catch in the
main and that the catch does not handle all
exceptions. Not detected if no "main".

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

15-3-3 Handlers of a function-try-block
implementation of a class constructor or
destructor shall not reference non-static
members from this class or its bases.

15-3-5 A class type exception shall always be
caught by reference.

15-3-6 Where multiple handlers are provided in
a single try-catch statement or function-
try-block for a derived class and some or all

12 Coding Rule Sets and Concepts

12-126

N. MISRA Definition Polyspace Specification

of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a
single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall
occur last.

15-4-1 If a function is declared with an exception-
specification, then all declarations of the
same function (in other translation units)
shall be declared with the same set of type-
ids.

15-5-1 A class destructor shall not exit with an
exception.

Limit detection to throw and catch that are
internals to the destructor; rethrows are
partially processed; no detections in nested
handlers.

15-5-2 Where a function's declaration includes an
exception-specification, the function shall
only be capable of throwing exceptions of
the indicated type(s).

Limit detection to throw that are internals
to the function; rethrows are partially
processed; no detections in nested handlers.

Preprocessing Directives

N. MISRA Definition Polyspace Specification

16-0-1 #include directives in a file shall only be
preceded by other preprocessor directives or
comments.

16-0-2 Macros shall only be #define 'd or #undef 'd
in the global namespace.

16-0-3 #undef shall not be used.
16-0-4 Function-like macros shall not be defined.
16-0-5 Arguments to a function-like macro

shall not contain tokens that look like
preprocessing directives.

16-0-6 In the definition of a function-like macro,
each instance of a parameter shall be

 MISRA C++ Coding Rules

12-127

N. MISRA Definition Polyspace Specification

enclosed in parentheses, unless it is used as
the operand of # or ##.

16-0-7 Undefined macro identifiers shall not be
used in #if or #elif preprocessor directives,
except as operands to the defined operator.

16-0-8 If the # token appears as the first token on
a line, then it shall be immediately followed
by a preprocessing token.

16-1-1 The defined preprocessor operator shall
only be used in one of the two standard
forms.

16-1-2 All #else, #elif and #endif preprocessor
directives shall reside in the same file as
the #if or #ifdef directive to which they are
related.

16-2-1 The preprocessor shall only be used for file
inclusion and include guards.

The rule is raised for #ifdef/#define if the
file is not an include file.

16-2-2 C++ macros shall only be used for: include
guards, type qualifiers, or storage class
specifiers.

16-2-3 Include guards shall be provided.
16-2-4 The ', ", /* or // characters shall not occur in

a header file name.

16-2-5 The \ character should not occur in a
header file name.

16-2-6 The #include directive shall be followed by
either a <filename> or "filename" sequence.

16-3-1 There shall be at most one occurrence of
the # or ## operators in a single macro
definition.

16-3-2 The # and ## operators should not be used.

12 Coding Rule Sets and Concepts

12-128

Library Introduction

N. MISRA Definition Polyspace Specification

17-0-1 Reserved identifiers, macros and functions
in the standard library shall not be defined,
redefined or undefined.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

17-0-2 The names of standard library macros and
objects shall not be reused.

17-0-5 The setjmp macro and the longjmp function
shall not be used.

Language Support Library

N. MISRA Definition Polyspace Specification

18-0-1 The C library shall not be used.
18-0-2 The library functions atof, atoi and atol

from library <cstdlib> shall not be used.

18-0-3 The library functions abort, exit, getenv
and system from library <cstdlib> shall not
be used.

The option -dialect iso must be used to
detect violations, for example, exit.

18-0-4 The time handling functions of library
<ctime> shall not be used.

18-0-5 The unbounded functions of library
<cstring> shall not be used.

18-2-1 The macro offsetof shall not be used.
18-4-1 Dynamic heap memory allocation shall not

be used.

18-7-1 The signal handling facilities of <csignal>
shall not be used.

Diagnostic Library

N. MISRA Definition Polyspace Specification

19-3-1 The error indicator errno shall not be used.

 MISRA C++ Coding Rules

12-129

Input/output Library

N. MISRA Definition Polyspace Specification

27-0-1 The stream input/output library <cstdio>
shall not be used.

MISRA C++ Rules Not Checked

• “Language Independent Issues” on page 12-129
• “General” on page 12-130
• “Lexical Conventions” on page 12-131
• “Standard Conversions” on page 12-131
• “Expressions” on page 12-131
• “Declarations” on page 12-132
• “Classes” on page 12-132
• “Templates” on page 12-132
• “Exception Handling” on page 12-133
• “Preprocessing Directives” on page 12-133
• “Library Introduction” on page 12-134

Language Independent Issues

N. MISRA Definition Polyspace Specification

0–1–3 A project shall not contain unused
variables.

0-1-4 A project shall not contain non-volatile
POD variables having only one use.

0-1-5 A project shall not contain unused type
declarations.

0-1-6 A project shall not contain instances of non-
volatile variables being given values that
are never subsequently used.

12 Coding Rule Sets and Concepts

12-130

N. MISRA Definition Polyspace Specification

0-1-8 All functions with void return type shall
have external side effects.

0-1-9 There shall be no dead code. Not checked by the coding rules checker.
Can be enforced through detection of dead
code during analysis.

0-1-11 There shall be no unused parameters
(named or unnamed) in nonvirtual
functions.

0-1-12 There shall be no unused parameters
(named or unnamed) in the set of
parameters for a virtual function and all
the functions that override it.

0-2-1 An object shall not be assigned to an
overlapping object.

0-3-1 Minimization of run-time failures shall be
ensured by the use of at least one of: (a)
static analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 If a function generates error information,
then that error information shall be tested.

0-4-1 Use of scaled-integer or fixed-point
arithmetic shall be documented.

0-4-2 Use of floating-point arithmetic shall be
documented.

0-4-3 Floating-point implementations shall
comply with a defined floating-point
standard.

General

N. MISRA Definition Polyspace Specification

1-0-2 Multiple compilers shall only be used if
they have a common, defined interface.

 MISRA C++ Coding Rules

12-131

N. MISRA Definition Polyspace Specification

1-0-3 The implementation of integer division in
the chosen compiler shall be determined
and documented.

Lexical Conventions

N. MISRA Definition Polyspace Specification

2-2-1 The character set and the corresponding
encoding shall be documented.

2-7-2 Sections of code shall not be "commented
out" using C-style comments.

2-7-3 Sections of code should not be "commented
out" using C++ comments.

Standard Conversions

N. MISRA Definition Polyspace Specification

4-10-1 ULL shall not be used as an integer value.
4-10-2 Literal zero (0) shall not be used as the

null-pointer-constant.

Expressions

N. MISRA Definition Polyspace Specification

5-0-13 The condition of an if-statement and the
condition of an iteration- statement shall
have type bool.

5-0-16 A pointer operand and any pointer
resulting from pointer arithmetic using
that operand shall both address elements of
the same array.

5-0-17 Subtraction between pointers shall only be
applied to pointers that address elements of
the same array.

12 Coding Rule Sets and Concepts

12-132

N. MISRA Definition Polyspace Specification

5-17-1 The semantic equivalence between a binary
operator and its assignment operator form
shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification

7-1-1 A variable which is not modified shall be
const qualified.

7-1-2 A pointer or reference parameter in a
function shall be declared as pointer
to const or reference to const if the
corresponding object is not modified.

7-2-1 An expression with enum underlying type
shall only have values corresponding to the
enumerators of the enumeration.

7-4-1 All usage of assembler shall be
documented.

Classes

N. MISRA Definition Polyspace Specification

9-3-3 If a member function can be made static
then it shall be made static, otherwise if
it can be made const then it shall be made
const.

9-6-1 When the absolute positioning of bits
representing a bit-field is required, then the
behavior and packing of bit-fields shall be
documented.

Templates

N. MISRA Definition Polyspace Specification

14-5-1 A non-member generic function shall only
be declared in a namespace that is not an
associated namespace.

 MISRA C++ Coding Rules

12-133

N. MISRA Definition Polyspace Specification

14-7-1 All class templates, function templates,
class template member functions and
class template static members shall be
instantiated at least once.

14-7-2 For any given template specialization,
an explicit instantiation of the template
with the template-arguments used in the
specialization shall not render the program
ill-formed.

Exception Handling

N. MISRA Definition Polyspace Specification

15-0-1 Exceptions shall only be used for error
handling.

15-1-1 The assignment-expression of a throw
statement shall not itself cause an
exception to be thrown.

15-3-1 Exceptions shall be raised only after start-
up and before termination of the program.

15-3-4 Each exception explicitly thrown in the
code shall have a handler of a compatible
type in all call paths that could lead to that
point.

15-5-3 The terminate() function shall not be called
implicitly.

Preprocessing Directives

N. MISRA Definition Polyspace Specification

16-6-1 All uses of the #pragma directive shall be
documented.

12 Coding Rule Sets and Concepts

12-134

Library Introduction

N. MISRA Definition Polyspace Specification

17-0-3 The names of standard library functions
shall not be overridden.

17-0-4 All library code shall conform to MISRA C+
+.

 Polyspace JSF C++ Checker

12-135

Polyspace JSF C++ Checker

The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve
the robustness of C++ code, and improve maintainability.

6

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note: The Polyspace JSF C++ checker is based on JSF++:2005. For more information on
these coding standards, see Joint Strike Fighter Air Vehicle C++ Coding Standards for
the System Development and Demonstration Program.

6. JSF and Joint Strike Fighter are registered trademarks of Lockheed Martin.

http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc

12 Coding Rule Sets and Concepts

12-136

JSF C++ Coding Rules

In this section...

“Supported JSF C++ Coding Rules” on page 12-136
“JSF++ Rules Not Checked” on page 12-160

Supported JSF C++ Coding Rules

• “Code Size and Complexity” on page 12-137
• “Environment” on page 12-137
• “Libraries” on page 12-138
• “Pre-Processing Directives” on page 12-138
• “Header Files” on page 12-140
• “Style” on page 12-140
• “Classes” on page 12-144
• “Namespaces” on page 12-149
• “Templates” on page 12-149
• “Functions” on page 12-149
• “Comments” on page 12-150
• “Declarations and Definitions” on page 12-150
• “Initialization” on page 12-151
• “Types” on page 12-152
• “Constants” on page 12-152
• “Variables” on page 12-153
• “Unions and Bit Fields” on page 12-153
• “Operators” on page 12-153
• “Pointers and References” on page 12-155
• “Type Conversions” on page 12-155
• “Flow Control Standards” on page 12-157
• “Expressions” on page 12-158
• “Memory Allocation” on page 12-159

 JSF C++ Coding Rules

12-137

• “Fault Handling” on page 12-159
• “Portable Code” on page 12-160

Code Size and Complexity

N. JSF++ Definition Polyspace Specification

1 Any one function (or method) will contain no
more than 200 logical source lines of code (L-
SLOCs).

Message in report file:

<function name> has <num> logical

source lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic

complexity number equal to <num>

Environment

N. JSF++ Definition Polyspace Specification

8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be

used: <digraph>

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -dialect iso

13 Multi-byte characters and wide string
literals will not be used.

Report L'c' and L"string" and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Provision shall be made for run-time
checking (defensive programming).

Done with checks in the software.

12 Coding Rule Sets and Concepts

12-138

Libraries

N. JSF++ Definition Polyspace Specification

17 The error indicator errno shall not be
used.

errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used
as a macro or a global with external "C"
linkage.

21 The signal handling facilities of
<signal.h> shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used
as a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,
#include.

 JSF C++ Coding Rules

12-139

N. JSF++ Definition Polyspace Specification

27 #ifndef, #define and #endif will be
used to prevent multiple inclusions of
the same header file. Other techniques to
prevent the multiple inclusions of header
files will not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of
a macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor

directive shall not be used to

create inline macros.

• 29.2 : Inline functions shall be

used intead of inline macros

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

12 Coding Rule Sets and Concepts

12-140

Header Files

N. JSF++ Definition Polyspace Specification

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification

40 Every implementation file shall include the
header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation
is not at least two spaces more than the
statement containing it. Does not report
bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

 JSF C++ Coding Rules

12-141

N. JSF++ Definition Polyspace Specification

47 Identifiers will not begin with the
underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier "Idf1" (file1.cpp

line l1 column c1) and

"Idf2" (file2.h line l2 column

c2) only differ by the presence/

absence of the underscore

character.

• Identifier "Idf1" (file1.cpp

line l1 column c1) and

"Idf2" (file2.h line l2 column

c2) only differ by a mixture of

case.

• Identifier "Idf1" (file1.cpp

line l1 column c1) and

"Idf2" (file2.h line l2 column

c2) only differ by letter 'O',

with the number '0'.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name

of a class will begin with an

uppercase letter.

• The first word of the namespace

of a class will begin with an

uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

12 Coding Rule Sets and Concepts

12-142

N. JSF++ Definition Polyspace Specification

51 All letters contained in function and
variables names will be composed entirely
of lowercase letters.

Messages in report file:

• All letters contained in

variable names will be composed

entirely of lowercase letters.

• All letters contained in

function names will be composed

entirely of lowercase letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value

shall be lowercase.

• Identifier for template constant

parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will
be written on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the last
argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

 JSF C++ Coding Rules

12-143

N. JSF++ Definition Polyspace Specification

59 The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body

of an if statement shall always

be enclosed in braces.

• The statements forming the

body of an else statement shall

always be enclosed in braces.

• The statements forming the

body of a while statement shall

always be enclosed in braces.

• The statements forming the body

of a do ... while statement

shall always be enclosed in

braces.

• The statements forming the body

of a for statement shall always

be enclosed in braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the address-
of operator ‘&’ will be directly connected
with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

12 Coding Rule Sets and Concepts

12-144

N. JSF++ Definition Polyspace Specification

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note: A violation will be reported for “.” used
in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members
will be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic

class members "<field>" will be

 JSF C++ Coding Rules

12-145

N. JSF++ Definition Polyspace Specification

performed through the member

initialization list.

75 Members of the initialization list shall be
listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy

assign

• no copy constructor

• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function
shall not contain default arguments that
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note: A violation is raised even if “new” is
done in a “if/else”.

12 Coding Rule Sets and Concepts

12-146

N. JSF++ Definition Polyspace Specification

81 The assignment operator shall handle self-
assignment correctly

Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

 JSF C++ Coding Rules

12-147

N. JSF++ Definition Polyspace Specification

82 An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=

operator+=

operator-=

operator*=

operator >>=

operator <<=

operator /=

operator %=

operator |=

operator &=

operator ^=

prefix operator++

prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall

return a reference to *this.

• An assignment operator shall

return a reference to its first

arg.

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

12 Coding Rule Sets and Concepts

12-148

N. JSF++ Definition Polyspace Specification

88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public

implementation shall not be

allowed: <public_base_class> is

not an interface.

• Multiple inheritance on

protected implementation

shall not be allowed :

<protected_base_class_1>

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not
be redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function

%s shall not be redefined in a

derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated
polymorphically.

Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay, Not
checked on private methods

 JSF C++ Coding Rules

12-149

N. JSF++ Definition Polyspace Specification

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

Namespaces

N. JSF++ Definition Polyspace Specification

98 Every nonlocal name, except main(),
should be placed in some namespace.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification

104 A template specialization shall be declared
before its use.

Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.

12 Coding Rule Sets and Concepts

12-150

N. JSF++ Definition Polyspace Specification

114 All exit points of value-returning functions
shall be through return statements.

116 Small, concrete-type arguments (two or
three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call

directly itself.

121 Only functions with 1 or 2 statements
should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification

126 Only valid C++ style comments (//) shall be
used.

133 Every source file will be documented with
an introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification

135 Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

 JSF C++ Coding Rules

12-151

N. JSF++ Definition Polyspace Specification

136 Declarations should be at the smallest
feasible scope.

Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the
same block) or is not used in two sub-
statements of its declaration.

Note:

• Non-used variables are reported.

• Initializations at definition are ignored
(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside
a translation unit. Reports when the
declaration localization is not the same in all
translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification

142 All variables shall be initialized before use. Done with Non-initialized variable checks in
the software.

12 Coding Rule Sets and Concepts

12-152

N. JSF++ Definition Polyspace Specification

144 Braces shall be used to indicate and match
the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

Types

N. JSF++ Definition Polyspace Specification

147 The underlying bit representations of
floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification

149 Octal constants (other than zero) shall not
be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

151.1 A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.

 JSF C++ Coding Rules

12-153

N. JSF++ Definition Polyspace Specification

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification

152 Multiple variable declarations shall not be
allowed on the same line.

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification

153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification

157 The right hand operand of a && or ||
operator shall not contain side effects.

Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a &&

operator shall not contain side

effects.

• The right hand operand of a ||

operator shall not contain side

effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical

&& shall be parenthesized if

the operands contain binary

operators.

12 Coding Rule Sets and Concepts

12-154

N. JSF++ Definition Polyspace Specification

• The operands of a logical

|| shall be parenthesized if

the operands contain binary

operators.

Exception for:
X || Y || Z , Z&&Y &&Z

159 Operators ||, &&, and unary & shall not be
overloaded.

Messages in report file:

• Unary operator & shall not be

overloaded.

• Operator || shall not be

overloaded.

• Operator && shall not be

overloaded.

160 An assignment expression shall be used
only as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

 JSF C++ Coding Rules

12-155

Pointers and References

N. JSF++ Definition Polyspace Specification

169 Pointers to pointers should be avoided when
possible.

Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or
• elements of the same array (including

one past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type
of function, cast, and exception specification.

Type Conversions

N. JSF++ Definition Polyspace Specification

177 User-defined conversion functions should
be avoided.

Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

12 Coding Rule Sets and Concepts

12-156

N. JSF++ Definition Polyspace Specification

Additional message for constructor case:

This constructor should be flagged

as "explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a
loss of information shall not be used.

Reports the following implicit casts :

integer => smaller integer

unsigned => smaller or eq signed

signed => smaller or eq un-signed

integer => float

float => integer

Does not report for cast to bool reports
for implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or -ignore-
constant-overflows

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

 JSF C++ Coding Rules

12-157

N. JSF++ Definition Polyspace Specification

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Specification

186 There shall be no unreachable code. Done with gray checks in the software.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

12 Coding Rule Sets and Concepts

12-158

N. JSF++ Definition Polyspace Specification

194 All switch statements that do not intend
to test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used
as loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for
loop will perform no actions other than
to initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198),
with non class type. Rule 200 must not be
violated for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a
for loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198),
and no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification

202 Floating point variables shall not be tested
for exact equality or inequality.

Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall
only be used in the following contexts:

• by itself

Reports when:

• A side effect is found in a return
statement

 JSF C++ Coding Rules

12-159

N. JSF++ Definition Polyspace Specification

• the right-hand side of an assignment
• a condition
• the only argument expression with a

side-effect in a function call
• condition of a loop
• switch condition
• single part of a chained operation

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

204.1 The value of an expression shall be the
same under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

• Volatile variable is accessed more than
once

Note: Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification

206 Allocation/deallocation from/to the free store
(heap) shall not occur after initialization.

Reports calls to C library functions: malloc
/ calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification

208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.

12 Coding Rule Sets and Concepts

12-160

Portable Code

N. JSF++ Definition Polyspace Specification

209 The basic types of int, short, long, float
and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these type
names used in the code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s
operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:
p + I

p - I

p++

p--

p+=

p-=

Allows p[i].

JSF++ Rules Not Checked

• “Code Size and Complexity” on page 12-161
• “Rules” on page 12-161
• “Environment” on page 12-162
• “Libraries” on page 12-162
• “Header Files” on page 12-162
• “Style” on page 12-162
• “Classes” on page 12-163
• “Namespaces” on page 12-164
• “Templates” on page 12-164
• “Functions” on page 12-165

 JSF C++ Coding Rules

12-161

• “Comments” on page 12-165
• “Initialization” on page 12-166
• “Types” on page 12-166
• “Unions and Bit Fields” on page 12-166
• “Operators” on page 12-166
• “Type Conversions” on page 12-167
• “Expressions” on page 12-167
• “Memory Allocation” on page 12-167
• “Portable Code” on page 12-167
• “Efficiency Considerations” on page 12-168
• “Miscellaneous” on page 12-168
• “Testing” on page 12-168

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

12 Coding Rule Sets and Concepts

12-162

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.
37 Header (include) files should include only those header files that are required for them to

successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases,
a suffix should be appended to reflect a logical differentiation.

 JSF C++ Coding Rules

12-163

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const.
Member functions should be const by default. Only when there is a clear, explicit reason
should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not

be allowed until the object has been fully initialized.
72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be

defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.

12 Coding Rule Sets and Concepts

12-164

N. JSF++ Definition

91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect

to all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

Namespaces

N. JSF++ Definition

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.

 JSF C++ Coding Rules

12-165

N. JSF++ Definition

106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal
parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.

12 Coding Rule Sets and Concepts

12-166

N. JSF++ Definition

129 Comments in header files should describe the externally visible behavior of the functions
or classes being documented.

130 The purpose of every line of executable code should be explained by a comment, although
one comment may describe more than one line of code.

131 One should avoid stating in comments what is better stated in code (i.e. do not simply
repeat what is in the code).

132 Each variable declaration, typedef, enumeration value, and structure member will be
commented.

134 Assumptions (limitations) made by functions should be documented in the function’s
preamble.

Initialization

N. JSF++ Definition

143 Variables will not be introduced until they can be initialized with meaningful values.
(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

Types

N. JSF++ Definition

146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition

155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition

167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

 JSF C++ Coding Rules

12-167

Type Conversions

N. JSF++ Definition

183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition

204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

Memory Allocation

N. JSF++ Definition

207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition

210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin
at particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.

12 Coding Rule Sets and Concepts

12-168

N. JSF++ Definition

214 Assuming that non-local static objects, in separate translation units, are initialized in a
special order shall not be done.

Efficiency Considerations

N. JSF++ Definition

216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

13

Checking Coding Rules

• “Activate Coding Rules Checker” on page 13-2
• “Select Specific MISRA or JSF Coding Rules” on page 13-6
• “Create Custom Coding Rules” on page 13-9
• “Format of Custom Coding Rules File” on page 13-11
• “Exclude Files from Rules Checking” on page 13-12
• “Allow Custom Pragma Directives” on page 13-13
• “Specify Boolean Types” on page 13-14
• “Review Coding Rule Violations” on page 13-15
• “Filter and Group Coding Rule Violations” on page 13-17
• “Generate Coding Rules Report” on page 13-18

13 Checking Coding Rules

13-2

Activate Coding Rules Checker
This example shows how to activate the coding rules checker before you start a
verification. This activation enables Polyspace Code Prover to search for coding rule
violations. You can view the coding rule violations in your verification results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, use the Use generated code requirements option
to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

MISRA C:2004
Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

 MISRA AC AGC

13-3

Option Description

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

13 Checking Coding Rules

13-4

Option Description

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

 JSF C++

13-5

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results Summary pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules”
• “Create Custom Coding Rules”
• “Exclude Files from Rules Checking”

More About
• “Rule Checking”
• “Software Quality Objective Subsets (C:2004)” on page 12-11
• “Software Quality Objective Subsets (C:2012)” on page 12-57
• “Software Quality Objective Subsets (AC AGC)” on page 12-15
• “Software Quality Objective Subsets (C++)” on page 12-103

13 Checking Coding Rules

13-6

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3 Select the check box for the type of coding rules you wish to check
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

 Select Specific MISRA or JSF Coding Rules

13-7

Select On for the rules you want to check.
6 Click OK to save the rules and close the window.

The Save as dialog box opens.
7 In the File field, enter a name for the rules file.
8 Click OK to save the file and close the dialog box.

13 Checking Coding Rules

13-8

The full path to the rules file appears. To reuse this rules file for other projects, type

this path name or use the icon in the New File window.

Related Examples
• “Activate Coding Rules Checker”
• “Create Custom Coding Rules”

More About
• “Rule Checking”

 Create Custom Coding Rules

13-9

Create Custom Coding Rules

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code with reference to custom rules that
you specify. For each rule, you specify a pattern in the form of a regular expression. The
software compares the pattern against identifiers in the source code and determines
whether the custom rule is violated.

Save Example Code

Save the following code in a file printInitialValue.c:

#include <stdio.h>

typedef struct {

int a;

int b;

} collection;

void main()

{

 collection myCollection={0,0};

 printf("Initial values in the collection are %d

 and %d.",myCollection.a,myCollection.b);

}

Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules. Select the Check custom rules

box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 From the drop-down list Set the following state to all Custom C, select Off.

Click Apply.
5 Expand the Structs node. For the option 4.3 All struct fields must follow the

specified pattern:

13 Checking Coding Rules

13-10

Column Title Action

On Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters.

Pattern Enter s_[A-Z0-9_]
Comment Leave blank. This column is for

comments that appear in the coding rules
file alone.

Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane, you see two
violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Check Details pane, you see the error message you had entered, All

struct fields must begin with s_ and have capital letters.

2 Right-click on the Source pane and select Open Source File. The file
printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

3 In the file, replace all instances of a with s_A and b with s_B. Rerun the verification.

The custom rule violations no longer appear on the Results Summary pane.

Related Examples
• “Activate Coding Rules Checker”
• “Select Specific MISRA or JSF Coding Rules”
• “Exclude Files from Rules Checking”

More About
• “Rule Checking”
• “Format of Custom Coding Rules File”

 Format of Custom Coding Rules File

13-11

Format of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After verification, it displays the

coding rule violation on the Results Summary pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Naming Convention Rules” on page
12-4.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules”

13 Checking Coding Rules

13-12

Exclude Files from Rules Checking

This example shows how to exclude certain files from coding rules checking. The files are
still included during Code Prover verification.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Select the Files and folders to ignore check box.
4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Excludes header files in the Include folders of your
project. For example .h or .hpp files.

• all — Excludes all include files in the Include folders of your project. For
example, if you are checking a large code base with standard or Visual headers,
excluding include folders can significantly improve the speed of code analysis.

• custom — Excludes files or folders specified in the File/Folder view. To add

files to the custom File/Folder list, select to choose the files and folders to
exclude. To remove a file or folder from the list of excluded files and folders, select

the row. Then click .

See Also
“Files and folders to ignore (C)”

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

 Allow Custom Pragma Directives

13-13

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that all pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

13 Checking Coding Rules

13-14

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements. The use of this option may affect the checking of MISRA
C:2004 rules 12.6, 13.2, 15.4, and MISRA C:2012 rules 14.4, 16.7.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker”

More About
• “Rule Checking”

 Review Coding Rule Violations

13-15

Review Coding Rule Violations

This example shows how to review coding rule violations in the Results Manager
perspective once code analysis is complete. After analysis, the Results Summary pane
displays the rule violations with a

• symbol for predefined coding rules such as MISRA C:2004.
• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.

• The predefined rules such as MISRA or JSF are indicated by .
• The custom rules are indicated by .

2 On the Check Details pane, view the location and description of the violated rule.
In the source code, the line containing the violation appears highlighted.

3 Review the violation. On the Results Summary pane, select a Classification to
describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

4 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

13 Checking Coding Rules

13-16

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided

You can also define your own statuses.
5 In the comment box, enter additional information about the violation.
6 To open the source file that contains the coding rule violation, on the Source pane,

right-click the code with the purple check. From the context menu, select Open
Source File. The file opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 Fix the coding rule violation.
8 When you have corrected the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker”
• “Filter and Group Coding Rule Violations”

 Filter and Group Coding Rule Violations

13-17

Filter and Group Coding Rule Violations

This example shows how to use filters in the Results Summary pane to focus on specific
kinds of coding rule violations. By default, the software displays all coding rule violations
and run-time checks.

Group Violations

1 On the Results Summary pane, select Group by > Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Filter Violations

1 On the Results Summary pane, place your cursor on the Check column header.
Click the filter icon that appears.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

Related Examples
• “Activate Coding Rules Checker”
• “Review Coding Rule Violations”
• “Organize Results Using Filters and Groups”

13 Checking Coding Rules

13-18

Generate Coding Rules Report

This example shows how to generate and view a coding rules report after verification.

Generate Report

1 In the Results Manager perspective, select Reporting > Run Report.
2 In the Run Report dialog box, from the Select Reports menu, select CodingRules.
3 Specify Output folder and Output format.
4 Select Run Report.

Open Existing Report

1 In the Results Manager perspective, select Reporting > Open Report.
2 In the Open Report dialog box, navigate to the folder that contains the coding rules

report.

The default location is in ResultFolder\Polyspace-Doc
3 Select the report and click OK.

View Report

In the coding rules report, you can view the following information:

• Summary for all Files — Lists number of violations in each file.
• Summary for Enabled Rules — For each rule, lists the:

• Rule number.
• Rule description.
• Number of times the rule is broken.

• Violations — For each file that Polyspace checked for coding rule violations, lists
each violation along with the:

• Rule description.
• Unique ID for the violation. Use this ID to find the violation on the Results

Summary pane.
• Function where the rule violation is found.
• Line and column number.

 Generate Coding Rules Report

13-19

• Review information you enter such as Class, Status and Comment.
• Configuration Settings — Lists analysis options used for the verification, along

with coding rules that Polyspace checked.

Related Examples
• “Activate Coding Rules Checker”
• “Customize Report Templates”

13-20

14

Software Quality with Polyspace
Metrics

• “Software Quality with Polyspace Metrics” on page 14-2
• “Set Up Verification to Generate Metrics” on page 14-3
• “Open Polyspace Metrics” on page 14-9
• “Organize Polyspace Metrics Projects” on page 14-11
• “Protect Access to Project Metrics” on page 14-13
• “Web Browser Support” on page 14-15
• “Review Overall Progress” on page 14-16
• “Display Metrics for Single Project Version” on page 14-20
• “Create File Module and Specify Quality Level” on page 14-21
• “Compare Project Versions” on page 14-23
• “Review New Findings” on page 14-24
• “Review Results” on page 14-25
• “Save Review Comments” on page 14-27
• “Fix Defects” on page 14-28
• “Predefined SQO Levels” on page 14-29
• “Customize Software Quality Objectives” on page 14-37
• “Elements in Custom SQO File” on page 14-40
• “Polyspace Metrics Assumptions” on page 14-43
• “Status Acronyms” on page 14-44
• “Code Metrics” on page 14-45
• “Run-Time Checks” on page 14-55
• “Number of Lines of Code Calculation” on page 14-57
• “Administer Results Repository” on page 14-58

14 Software Quality with Polyspace Metrics

14-2

Software Quality with Polyspace Metrics

Polyspace Metrics is a Web-based tool for software development managers, quality
assurance engineers, and software developers, to do the following in software projects:

• Evaluate software quality metrics
• Monitor the variation of code metrics, coding rule violations, and run-time checks

through the lifecycle of a project
• View defect numbers, run-time reliability of the software, review progress, and the

status of the code with respect to software quality objectives.

If you are a development manager or a quality assurance engineer, through a Web
browser, you can:

• View software quality information about your project. See “Open Polyspace Metrics”
on page 14-9.

• Observe trends over time, by project or module. See “Review Overall Progress” on
page 14-16.

• Compare metrics of one project version with those of another. See “Compare Project
Versions” on page 14-23.

If you have the Polyspace product installed on your computer, you can drill down to
coding rule violations and run-time checks in the Polyspace verification environment.
This feature allows you to:

• Review coding rule violations
• Review run-time checks and, if required, classify these checks as defects

In addition, if you think that coding rule violations and run-time checks can be justified,
you can mark them as justified and enter comments. See “Review Results” on page
14-25.

If you are a software developer, Polyspace Metrics allows you to focus on the latest
version of the project that you are working on. You can use the view filters and drill-
down functionality to go to code defects, which you can then fix. See “Fix Defects” on page
14-28.

Polyspace calculates metrics that are used to determine whether your code fulfills
predefined software quality objectives. You can redefine these software quality objectives.
See “Customize Software Quality Objectives”.

 Set Up Verification to Generate Metrics

14-3

Set Up Verification to Generate Metrics

You can run, either manually or automatically, verifications that generate metrics. In
each case, Polyspace uses a metrics computation engine to evaluate metrics for your code,
and stores these metrics in a results repository.

Before you run a verification manually, in the Project Manager perspective:

1 On the Configuration pane, select Distributed Computing.
2 Select Batch.
3 Select the Add to results repository check box.

To set up scheduled, automatic verification runs, see “Specify Automatic Verification” on
page 14-3.

The software saves generated metrics in the following XML file:

Results_Folder/Polyspace-Doc/Code_Metrics.xml

See “Results Folder”.

Specify Automatic Verification

You can configure verifications to start automatically and periodically, for example, at
a specific time every night. At the end of each verification, the software stores results in
the repository and updates the project metrics. You can also configure the software to
send you an email at the end of the verification. This email will contain:

• Links to results
• An attached log file if the verification produces compilation errors
• A summary of new findings, for example, new coding rule violations, and new

potential and actual run-time errors

To configure automatic verification, you must create an XML file Projects.psproj
that has the following elements:

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Polyspace Metrics Automatic Verification Project File -->

<Configuration>

 <Project>

 <Options>

 </Options>

14 Software Quality with Polyspace Metrics

14-4

 <LaunchingPeriod>

 </LaunchingPeriod>

 <Commands>

 </Commands>

 <Users>

 <User>

 </User>

 </Users>

 </Project>

 <SmtpConfiguration>

 </SmtpConfiguration>

</Configuration>

Configure the verification by providing data for the elements (and their attributes)
within Configuration. See “Element and Attribute Data for Projects.psproj” on page
14-4.

After creating Projects.psproj, on the Polyspace Metrics server, place the file in the
results repository. For example:

/var/Polyspace/results-repository

Element and Attribute Data for Projects.psproj

The following topics describe the data required to configure automatic verification.

Project

Specify the following attributes:

• name — Your project name.
• language — C or CPP.
• verificationKind — Mode, which is either INTEGRATION or UNIT-BY-UNIT.
• product — Product name, which is either BUG-FINDER or CODE-PROVER.

For example,
<Project name="Demo_C" language="C" verificationKind="INTEGRATION"

 product="CODE-PROVER">

The Project element also contains the following elements:

• “Options” on page 14-5
• “LaunchingPeriod” on page 14-5

 Set Up Verification to Generate Metrics

14-5

• “Commands” on page 14-6
• “Users” on page 14-6

Options

Specify a list of the Polyspace options required for your verification, with the exception
of -unit-by-unit, -results-dir, -prog and -verif-version. If these four options
are present, they are ignored.

The following is an example.
 <Options>

 -O2

 -to pass2

 -target sparc

 -temporal-exclusions-file sources/temporal_exclusions.txt

 -entry-points tregulate,proc1,proc2,server1,server2

 -critical-section-begin Begin_CS:CS1

 -critical-section-end End_CS:CS1

 -misra2 all-rules

 -includes-to-ignore sources/math.h

 -D NEW_DEFECT

 </Options>

LaunchingPeriod

For the starting time of the verification, specify five attributes:

• hour. Any integer in the range 0–23.
• minute. Any integer in the range 0–59.
• month. Any integer in the range 1–12.
• day. Any integer in the range 1–31.
• weekDay. Any integer in the range 1–7, where 1 specifies Monday.

Use * to specify all values in range, for example, month="*" specifies a verification every
month.

Use - to specify a range, for example, weekDay="1-5" specifies Monday to Friday.

You can also specify a list for each attribute. For example, day="1,15" specifies the first
and the fifteenth day of the month.

Default: If you do not specify attribute data for LaunchingPeriod, then a verification is
started each week day at midnight.

14 Software Quality with Polyspace Metrics

14-6

The following is an example.
<LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">

Commands

You can provide a list of optional commands. There must be only one command per line,
and these commands must be executable on the computer that starts the verification.

• GetSource. A command to retrieve source files from the configuration management
system, or the file system of the user. Executed in a temporary folder on the client
computer, which is also used to store results from the compilation phase of the
verification. This temporary folder is removed after the verification is spooled to the
Polyspace server.

For example:
<GetSource>

 cvs co –r 1.4.6.4 myProject

 mkdir sources

 cp –fvr myProject/*.c sources

</GetSource>

You can also use:
<GetSource>

 find /……/myProject –name “*.cpp” | tee sources_list.txt

</GetSource>

and add -sources-list-file sources_list.txt to the options list.
• GetVersion. A command to retrieve the version identifier of your project. Polyspace

uses the version identifier as a parameter for -verif-version.

For example:
<GetVersion>

 cd /…../myProject ; cvs status Makefile 2>/dev/null | grep 'Sticky Tag:'

 | sed 's/Sticky Tag://' | awk '{print $1"-"$3}'| sed 's/).*$//'

</GetVersion>

Users

A list of users, where each user is defined using the element “User” on page 14-6.

User

Define a user using three elements:

• FirstName. First name of user.

 Set Up Verification to Generate Metrics

14-7

• LastName. Last name of user.
• Mail. Use the attributes resultsMail and compilationFailureMail to specify

conditions for sending an email at the end of verification. Specify the email address in
the element.

• resultsMail. You can use any of the following values:

• ALWAYS. Default. Email sent at the end of each automatic verification (even if
the verification does not produce new run-time checks or coding rule violations).

• NEW-CERTAIN-FINDINGS. Email sent only if verification produces new red,
gray, NTC, or NTL checks.

• NEW-POTENTIAL-FINDINGS. Email sent only if verification produces new
orange check.

• NEW-CODING-RULES-FINDINGS. Email sent only if verification produces new
coding rule violation or warning.

• ALL-NEW-FINDINGS. Email sent if verification produces a new run-time check
or coding rule violation.

• compilationFailureMail. Either Yes (default) or No. If Yes, email sent when
automatic verification fails because of a compilation failure.

The following is an example of Mail.
<Mail resultsMail="NEW-POTENTIAL-FINDINGS|NEW-CODING-RULES-FINDINGS"

compilationFailureMail="yes">

 user_id@yourcompany.com

</Mail>

SmtpConfiguration

This element is mandatory for sending email, and you must specify the following
attributes:

• server. Your Simple Mail Transport Protocol (SMTP) server.
• port. SMTP server port. Optional, default is 25.

For example:
<SmtpConfiguration server="smtp.yourcompany.com" port="25">

Example of Projects.psproj

The following is an example of Projects.psproj:

14 Software Quality with Polyspace Metrics

14-8

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Polyspace Metrics Automatic Verification Project File -->

<Configuration>

<Project name="Demo_C" language="C" verificationKind="INTEGRATION"

product="CODE-PROVER">

 <Options>

 -O2

 -to pass2

 -target sparc

 -temporal-exclusions-file sources/temporal_exclusions.txt

 -entry-points tregulate,proc1,proc2,server1,server2

 -critical-section-begin Begin_CS:CS1

 -critical-section-end End_CS:CS1

 -misra2 all-rules

 -includes-to-ignore sources/math.h

 -D NEW_DEFECT

 </Options>

 <LaunchingPeriod hour="12" minute="20" month="*" weekDay="1-5">

 </LaunchingPeriod>

 <Commands>

 <GetSource>

 /bin/cp -vr /yourcompany/home/auser/tempfolder/Demo_C_Studio/sources/ .

 </GetSource>

 <GetVersion>

 </GetVersion>

 </Commands>

 <Users>

 <User>

 <FirstName>Polyspace</FirstName>

 <LastName>User</LastName>

 <Mail resultsMail="ALWAYS"

 compilationFailureMail="yes">userid@yourcompany.com</Mail>

 </User>

 </Users>

</Project>

<SmtpConfiguration server="smtp.yourcompany.com" port="25">

</SmtpConfiguration>

</Configuration>

 Open Polyspace Metrics

14-9

Open Polyspace Metrics

1 In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the Web server port number (default 8080)

To use HTTPS, you must set up the configuration file and the Metrics
configuration preferences. For more information, see “Configure Web Server for
HTTPS”.

2 Select the Projects tab.

You can save the project index page as a bookmark for future use. You can also save as
bookmarks any Polyspace Metrics pages that you subsequently navigate to.

To refresh the page at any point, click .

At the top of each column, use the filters to shorten the list of displayed projects. For
example:

• In the Project filter, if you enter demo_, the browser displays a list of projects with
names that begin with demo_.

• From the drop-down list for the Language filter, if you select C, the browser displays
only C projects, if you select C++, the browser displays only C++ projects.

If a new verification has been carried out for a project since your last visit to the project

index page, then the icon appears before the name of the project.

If you place your cursor anywhere on a project row, in a box on the left of the window, you
see the following project information:

• Language — For example, Ada, C, C++.
• Mode — Either Integration or Unit by Unit.
• Last Run Name — Identifier for last verification performed.
• Number of Runs — Number of verifications performed in project.

14 Software Quality with Polyspace Metrics

14-10

In a project row, click the Project name to go to the Summary view for that project.

 Organize Polyspace Metrics Projects

14-11

Organize Polyspace Metrics Projects

The Polyspace Metrics project index allows you to display projects as categories, a useful
feature when you have a large number of projects to manage. You can:

• Create multiple-level project categories.
• Move projects between categories by dragging and dropping projects.
• Rename and remove categories. When you remove a category, the software does not

delete the projects within the category but moves the projects back to the parent or
root level.

To create a root-level project category:

1 On the Polyspace Metrics project index, right-click a project.
2 From the context menu, select Create Project Category. The Add To Category

dialog box opens.
3 In Enter the name of the project category field, enter the required name, for

example, MyNewCategory. Then click OK.
4 To add projects to this new category, drag and drop the required projects into this

category.

To create a subroot-level category:

1 Right-click a project category.
2 From the context menu, select Create Project Category. The Add To Category

dialog box opens.
3 In Enter the name of the project category field, enter the required name, for

example, SubCategory1. If you decide that you do not want a subroot category, but
want a new root category instead, select the Create a root project category check
box. Then click OK.

4 To add projects to this new category, drag and drop the required projects into this
category.

To rename a project category:

1 Right-click the project category.
2 From the context menu, select Rename Project Category. The category name

becomes editable.

14 Software Quality with Polyspace Metrics

14-12

3 Enter the new name for your category. Press Return.
4 A message dialog box opens requesting confirmation. Click OK. The software

updates the category name.

To remove a project category:

1 Right-click the project category.
2 From the context menu, select Delete Project Category. If the project category is

a:

• Root-level project category, the software moves all projects to the root level and
removes the project category and all associated subroot categories.

• Subroot-level category, the software moves all projects within the subroot
category to the parent level and removes the subroot category.

Note: The software does not delete projects when removing project categories.

You can move projects back to the root level from project categories without removing the
project categories:

1 From within project categories, select the projects that you want to move to the root
level.

2 Right-click the selected projects. From the context menu, select Move to Root. The
software moves the projects back to the root level.

 Protect Access to Project Metrics

14-13

Protect Access to Project Metrics

You can restrict access to the metrics for a project by specifying a password:

• When you run a verification with Polyspace Metrics enabled or upload results to
Polyspace Metrics:

1 The Authentication Required dialog box opens.

2 In the Project password and Confirm password fields, enter your password.
3 Click OK.

• After the creation of a project:

1 From the Polyspace Metrics project index, right-click the project.
2 From the context menu, select Change/Set Password. The Change Project

Password dialog box opens.

3 In the New password and Confirm new password fields, enter your
password.

4 Click OK. The software displays the password-restricted icon next to the
project.

From the command line, you can use the -password option. For example:

polyspace-results-repository.exe -prog psdemo_model_link_sl -password my_passwd

14 Software Quality with Polyspace Metrics

14-14

Note: The password for a Polyspace Metrics project is encrypted. The Web data transfer
is not encrypted. The password feature minimizes unintentional data corruption, but it
does not provide data security. However, data transfers between a Polyspace Code Prover
local host and the remote verification MJS host are always encrypted. To use a secure
Web data transfer with HTTPS, see “Configure Web Server for HTTPS”.

After you enter your password, the project pages are accessible for a session that lasts 30
minutes. Access is available for this period of time, even if you close your Web browser.

If you return to the Polyspace Metrics project index, the session ends. If you click
during a session, the project pages are accessible for another 30 minutes.

 Web Browser Support

14-15

Web Browser Support

Polyspace Metrics supports the following Web browsers:

• Internet Explorer® version 7.0, or later
• Firefox® version 3.6, or later
• Google® Chrome version 12.0, or later
• Safari for Mac version 6.1.4 and 7.0.4

To use Polyspace Metrics, you must install on your computer Java, version 1.4 or later.

For the Firefox Web browser, you must manually install the required Java plug-in. For
example, if your computer uses the Linux operating system:

1 Create a Firefox folder for plug-ins:
mkdir ~/.mozilla/plugins

2 Go to this folder:
cd ~/.mozilla/plugins

3 Create a symbolic link to the Java plug-in, which is available in the Java Runtime
Environment folder of your MATLAB installation:
ln -s MATLAB_Install/sys/java/jre/glnxa64/jre/lib/amd64/libnpjp2.so

14 Software Quality with Polyspace Metrics

14-16

Review Overall Progress

For a development manager or quality assurance engineer, the Polyspace Metrics
Summary view provides useful high-level information, including quality trends, over the
course of a project.

To obtain the Summary view for a project:

1 Open the Polyspace Metrics project index. See “Open Polyspace Metrics” on page
14-9.

2 Click anywhere in the row that contains your project. You see the Summary view.

At the top of the Summary view, use the From and To filters to specify the project
versions that you want to examine. By default, the From and To fields specify the
earliest and latest project versions respectively.

In addition, by default, the Quality Objectives filter is OFF, and the Display Mode is
Review/Justification Progress (%).

Below the filters, you see:

• Plots that reveal how the number of verified files, lines of code, defects, and run-time
selectivity vary over the different versions of your project

 Review Overall Progress

14-17

• A table containing summary information about your project versions.

If you have projects with two or more file modules in the Polyspace verification
environment, by default, Polyspace Metrics displays verification results using the
same module structure. However, Polyspace Metrics also allows you to create or
delete file modules. See “Create File Module and Specify Quality Level” on page
14-21.

With the default filter settings, you can monitor progress in terms of coding rule
violations and run-time checks that quality assurance engineers or developers have
reviewed.

You can also monitor progress in terms of software quality objectives. You may, for
example, want to find out whether the latest version fulfills quality objectives.

To display software quality information, from the Quality Objectives drop-down list,
select ON .

Under Software Quality Objectives, you look at Review Progress for the latest
version (V4), which indicates that the review of verification results is incomplete (only
85.7% reviewed). You also see that the Overall Status is FAIL. This status indicates
that, although the review is incomplete, the project code fails to meet software quality
objectives for the quality level SQO-4. With this information, you may conclude that you
cannot release version V4 to your customers.

When Polyspace Metrics adds the results for a new project version to the repository,
Polyspace Metrics also imports comments from the previous version. For this reason, you
rarely see the review progress metric at 0% after verification of the first project version.

Note: You may want to find out whether your code fulfills software quality objectives at
another quality level, for example, SQ0-3. Under Software Quality Objectives, in the
Level cell, select SQ0-3 from the drop-down list.

14 Software Quality with Polyspace Metrics

14-18

There are seven quality levels, which are based on predefined software quality objectives.
You can customize these software quality objectives and modify the way quality is
evaluated. See “Customize Software Quality Objectives”.

To investigate further, under Run-Time Errors, in the Confirmed Defects cell, you
click the link 3. This action takes you to the Run-Time Checks view, where you see an
expanded view of check information for each file in the project.

To view a check in the Polyspace verification environment, in the relevant cell, click the
numeric value for the check. The Polyspace product opens with the Results Manager
perspective displaying verification information for this check.

Note: If you update check information through the Results Manager (see “Review
Results” on page 14-25), when you return to Polyspace Metrics, click Refresh to
incorporate this updated information.

If you want to view check information with reference to check type, from the Group by
drop-down list, select Run-Time Categories .

 Review Overall Progress

14-19

Returning to the Summary view, under Coding Rules and in the Violations cell, you
also see that there are coding rule violations. You may want to review these violations.
See “Review Results” on page 14-25.

14 Software Quality with Polyspace Metrics

14-20

Display Metrics for Single Project Version

To display metrics for a single project version:

1 In the From field, from the drop-down list, select the required project version.
2 In the To field, from the drop-down list, select the same project version.
3 In # items field, enter the maximum number of files for which you want information

displayed.

The software displays:

• Bar charts with file defect information, ordering the files according to the number
of defects in each file

• A table with information about the selected project version

 Create File Module and Specify Quality Level

14-21

Create File Module and Specify Quality Level

You can group files into a module and specify a quality level for the module, which
applies to all files within the module. By grouping your files in different modules, you can
specify different quality levels for your files.

To create a module of files:

1 Select a tab, for example, Summary.
2 In the Verification column, expand the node corresponding to the verification that

you are interested. You see the verified files.
3 Select the files that you want to place in a module.
4 Right-click the selected files, and, from the context menu, select Add To Module.

The Add to Module dialog box opens.
5 In the text field, enter the name for your new module, for example,

Example_module. Click OK. You see a new node.

To specify a quality level for the module:

1 Select the row containing the module.
2 Under Software Quality Objectives, click the Level cell.
3 From the drop-down list, select the quality level for your module.

To remove files from a module:

1 Expand the node corresponding to the module.
2 Select the files that you want to remove from the module.
3 Right-click your selection, and from the context menu, select Remove From

Module. The software removes the files from the module. If you remove all files from
the module, the software also removes the module from the tree.

14 Software Quality with Polyspace Metrics

14-22

Note: You can drag and drop files into and out of folders. For example, you can select
MISRA_my_c_file.c and drag the file to Example_module.

 Compare Project Versions

14-23

Compare Project Versions

You can compare metrics of two versions of a project.

1 In the From drop-down list, select one version of your project.
2 In the To drop-down list, select a newer version of your project.
3 Select the Compare check box.

In each view, for example, Summary, you see metric differences and tooltip messages
that indicate whether the newer version is an improvement over the older version.

14 Software Quality with Polyspace Metrics

14-24

Review New Findings

You can specify a project version and focus on the differences between the verification
results of your specified version and the previous verification. For example, consider a
project with versions 1.0, 1.1, 1.2, 2.0, and 2.1.

1 In the To field, specify a version of your project, for example, 2.0.
2 Select the New Findings Only check box. In the From field, you see 1.2 in

dimmed lettering, which is the previous verification. The charts and tables now show
the changes in results with respect to the previous verification.

To manage the content of the bar charts, in the # items field, enter the maximum
number of files for which you want information displayed. The software displays file
defect information, ordering the files according to the number of defects in each file.

 Review Results

14-25

Review Results

This example shows how to review results beginning from the Polyspace Metrics
interface. To review results, you must have Polyspace installed on your local computer.

1 In the Polyspace Metrics interface, click the Summary tab.

2 To see details about run-time errors, on the Run-Time Errors column, click a cell
value.

3 To see a breakdown of the errors in a file by checks, expand a filename node.

Tip To expand all subnodes under a node, right-click the node and select Expand All
Nodes.

14 Software Quality with Polyspace Metrics

14-26

4 If a check produces a red error, the check has a value under the Systematic
Runtime Errors (Red Checks) column. Click this value to view the check in the
Polyspace verification environment.

For instance, if you click the Systematic Runtime Errors (Red Checks) value on
the IDP row in example.c, the Illegally dereferenced pointer check in that file
appears in the Polyspace verification environment.

5 In the Polyspace verification environment, on the Results Summary pane, enter
review information such as:

• Classification: If you choose the classifications High, Medium or Low, when you
save the classification, the software updates the Confirmed Defects column in
Polyspace Metrics.

• Status: If you choose a review status, when you save the status, the software
updates the Review Progress column in Polyspace Metrics.

• Comment
6 Save the review information. The software saves this information to a local folder.

To change this local folder, select Tools > Preferences and enter the location under
the Server Configuration tab.

If you want to save the information to the local folder and the Polyspace Metrics
repository, on the Results Manager toolbar, select Metrics > Save comments to
Metrics.

 Save Review Comments

14-27

Save Review Comments

By default, when you save your project (Ctrl+S), the software saves your comments and
justifications to a local folder. To specify the folder location, select Tools > Preferences
and enter the location under the Server Configuration tab.

If you want to save your comments and justifications to a local folder and the Polyspace
Metrics repository, on the Results Manager toolbar, select Metrics > Save comments
to Metrics.

This default behavior allows you to upload your review comments and justifications only
when you are satisfied that your review is, for example, correct and complete.

If you want the software to save your comments and justifications to the local folder and
the Polyspace Metrics repository whenever you save your project (Ctrl+S):

1 Select Tools > Preferences > Server configuration.
2 Select the check box Save justifications in the Polyspace Metrics repository.

Note: In Polyspace Metrics, click to view updated information.

14 Software Quality with Polyspace Metrics

14-28

Fix Defects

If you are a software developer, you can begin to fix defects in code when, for example:

• In the Summary view, Review Progress shows 100%
• Your quality assurance engineer informs you

You can use Polyspace Metrics to access defects that you must fix.

Within the Summary view, under Run-Time Errors, click any cell value. This action
takes you to the Run-Time Checks view.

You want to fix defects that are classified as defects.

In the Confirmed Defects column, click a non-zero cell value. For example, if you click
2, Polyspace Code Prover opens with the checks visible in the Results Summary tab.

Double-click the row containing a check. In the Check Details pane, you see information
about this check. You can now go to the source code and fix the defect.

 Predefined SQO Levels

14-29

Predefined SQO Levels

The Software Quality Objectives or SQOs are a set of thresholds that generate a Quality
Status of PASS or FAIL for your verification results. You can use a predefined SQO
level or define your own SQOs. Following are the quality thresholds specified by each
predefined SQO.

SQO Level 1

Metric Threshold Value

Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a
function

1

Language scope, an indicator of the cost
of maintaining or changing functions.
Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0

14 Software Quality with Polyspace Metrics

14-30

Metric Threshold Value

Number of unjustified violations of the
following MISRA C:2004 rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

Number of unjustified violations of the
following MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

 SQO Level 2

14-31

Metric Threshold Value

Number of unjustified violations of the
following MISRA C++ rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1,

6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6,

15-3-7, 15-4-1, 15-5-1, 15-5-2
• 18-4-1

0

SQO Level 2

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds:

Metric Threshold Value

Number of unjustified red checks 0
Number of unjustified “Non-terminating
call” and “Non-terminating loop” checks

0

SQO Level 3

In addition to all the requirements of SQO Level 2, this level includes the following
thresholds:

14 Software Quality with Polyspace Metrics

14-32

Metric Threshold Value

Number of unjustified gray “Unreachable
code” checks

0

SQO Level 4

In addition to all the requirements of SQO Level 3, this level includes the following
thresholds:

Metric Threshold Value

“C++ specific checks”: 50
“Correctness condition”: 60
“Division by zero”: 80
“Exception handling”: 50
“Function returns a value”: 80
“Illegally dereferenced pointer”: 60
“Initialized return value”: 80
“Non-initialized local variable”: 80
“Non-initialized pointer”: 60
“Non-initialized variable”: 60
“Non-null this-pointer in method”: 50
“Object oriented programming”: 50
“Out of bounds array index”: 80
“Overflow”: 60
“Shift operations”: 80

Percentage of justified orange checks,
calculated as
(green checks + justified orange checks) / (green checks + all orange checks)

“User assertion”: 60

SQO Level 5

In addition to all the requirements of SQO Level 4, this level includes the following
thresholds:

 SQO Level 5

14-33

Metric Threshold Value

Number of unjustified violations of the
following MISRA C:2004 rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the
following MISRA C:2012 rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, 11.7, and

11.8
• 12.1 and 12.3
• 13.2 and 13.4
• 14.1, 14.2 and 14.4
• 15.1, 15.2, 15.3, 15.5, 15.6 and 15.7
• 16.4 and 16.5
• 17.1,17.2, and 17.4
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 20.4, 20.6, 20.7, 20.9, and 20.11
• 21.3

0

14 Software Quality with Polyspace Metrics

14-34

Metric Threshold Value

Number of unjustified violations of the
following MISRA C++ rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10,

5-0-13, 5-2-1, 5-2-2, 5-2-7, 5-2-11, 5-3-3,
5-2-5, 5-2-6, 5-3-2, 5-18-1

• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

“C++ specific checks”: 70
“Correctness condition”: 80
“Division by zero”: 90
“Exception handling”: 70
“Function returns a value”: 90
“Illegally dereferenced pointer”: 70
“Initialized return value”: 90
“Non-initialized local variable”: 90
“Non-initialized pointer”: 70
“Non-initialized variable”: 70
“Non-null this-pointer in method”: 70
“Object oriented programming”: 70
“Out of bounds array index”: 90
“Overflow”: 80
“Shift operations”: 90

Percentage of justified orange checks,
calculated as
(green checks + justified orange checks) / (green checks + all orange checks)

“User assertion”: 80

 SQO Level 6

14-35

SQO Level 6

In addition to all the requirements of SQO Level 5, this level includes the following
thresholds:

Metric Threshold Value

“C++ specific checks”: 90
“Correctness condition”: 100
“Division by zero”: 100
“Exception handling”: 90
“Function returns a value”: 100
“Illegally dereferenced pointer”: 80
“Initialized return value”: 100
“Non-initialized local variable”: 100
“Non-initialized pointer”: 80
“Non-initialized variable”: 80
“Non-null this-pointer in method”: 90
“Object oriented programming”: 90
“Out of bounds array index”: 100
“Overflow”: 100
“Shift operations”: 100

Percentage of justified orange checks,
calculated as
(green checks + justified orange checks) / (green checks + all orange checks)

“User assertion”: 100

SQO Exhaustive

In addition to all the requirements of SQO Level 1, this level includes the following
thresholds. The thresholds for coding rule violations apply only if you check for coding
rule violations.

Metric Threshold Value

Number of unjustified MISRA C and
MISRA C++ coding rule violations

0

14 Software Quality with Polyspace Metrics

14-36

Metric Threshold Value

Number of unjustified red checks 0
Number of unjustified “Non-terminating
call” and “Non-terminating loop” checks

0

Number of unjustified gray “Unreachable
code” checks

0

Percentage of justified orange checks,
calculated as
(green checks + justified orange checks) / (green checks + all orange checks)

100

For information on the rationales behind these levels, see Software Quality Objectives for
Source Code.

Related Examples
• “Customize Software Quality Objectives”

http://www.mathworks.com/tagteam/72337_Software_Quality_Objectives_V3.0.pdf
http://www.mathworks.com/tagteam/72337_Software_Quality_Objectives_V3.0.pdf

 Customize Software Quality Objectives

14-37

Customize Software Quality Objectives
This example shows how to customize the software quality objectives (SQO-s) that your
results are compared against. When you run verification to produce metrics, Polyspace
uses predefined SQO-s to generate a Quality Status of PASS or FAIL for your results.
However, you can define your own SQO-s.

Define Custom SQO

1 Save the following content in an XML file. Name the file Custom-SQO-
Definitions.xml.

<?xml version="1.0" encoding="UTF-8"?>

<MetricsDefinitions>

 <!-- Copyright 2010-2014 The MathWorks, Inc. -->

 <SQO ID="Custom_SQO_Level" ApplicableProduct="Code Prover">

 <comf>20</comf>

 <path>80</path>

 <goto>0</goto>

 <vg>10</vg>

 <calling>5</calling>

 <calls>7</calls>

 <param>5</param>

 <stmt>50</stmt>

 <level>4</level>

 <return>1</return>

 <vocf>4</vocf>

 <ap_cg_cycle>0</ap_cg_cycle>

 <ap_cg_direct_cycle>0</ap_cg_direct_cycle>

 <Num_Unjustified_Violations>Custom_MISRA_Rules_Set

</Num_Unjustified_Violations>

 <Num_Unjustified_Red>0</Num_Unjustified_Red>

 <Num_Unjustified_NT_Constructs>0

</Num_Unjustified_NT_Constructs>

 <Num_Unjustified_Gray>0</Num_Unjustified_Gray>

 <Percentage_Proven_Or_Justified>

Custom_Runtime_Checks_Set</Percentage_Proven_Or_Justified>

 </SQO>

 <CodingRulesSet ID="Custom_MISRA_Rules_Set">

 <Rule Name="MISRA_C_5_2">0</Rule>

 <Rule Name="MISRA_C_17_6">0</Rule>

 </CodingRulesSet>

14 Software Quality with Polyspace Metrics

14-38

 <RuntimeChecksSet ID="Custom_Runtime_Checks_Set">

 <Check Name="OBAI">80</Check>

 <Check Name="IDP">60</Check>

 </RuntimeChecksSet>

</MetricsDefinitions>

2 Save this XML file in the folder where remote analysis data is stored, for example,
C:\Users\JohnDoe\AppData\Roaming\Polyspace_RLDatas.

If you want to change the folder location, select Metrics > Metrics and Remote
Server Settings.

3 Modify the content of this file to specify your own quality thresholds. For more
information, see “Elements in Custom SQO File”.

4 For specifying coding rules, begin the rule name with the appropriate string followed
by the rule number. Use _ instead of a decimal point in the rule number.

Rule String Rule numbers

MISRA C MISRA_C_ “MISRA C:2004 Coding
Rules”

MISRA C++ MISRA_Cpp_ “MISRA C++ Coding Rules”
JSF C++ JSF_Cpp_ “JSF C++ Coding Rules”
Custom coding rules Custom_ “Custom Naming

Convention Rules”
5 For specifying checks, use the appropriate check acronym. For more information, see

“Check Acronyms”.

Use Custom SQO

To apply the custom SQO to your results:

1 Open your results in the Polyspace Metrics web interface.

• If you started the verification from your desktop, you can open the web interface
from the Polyspace user interface. Select the result file on the Project Browser
pane. Select Metrics > Open Metrics.

• If the verification was started from another desktop, open the web interface
directly in your web browser. For more information, see “Open Polyspace
Metrics”.

 Customize Software Quality Objectives

14-39

2 From the Quality Objectives drop down list in the upper left corner, select ON.
3 Under the Level column below Software Quality Objectives, select the cell

corresponding to the result you want. From the drop down list, select Custom-SQO-
Level.

The software compares the thresholds you had specified against your results and
updates the Quality Status column with PASS or FAIL.

14 Software Quality with Polyspace Metrics

14-40

Elements in Custom SQO File

The following tables list the XML elements that can be added to the custom SQO file.
The content of each element specifies a threshold against which the software compares
verification results. For each element, the table lists the metric to which the threshold
applies. Here, HIS refers to the Hersteller Initiative Software.

In this section...

“HIS Metrics” on page 14-40
“Non-HIS Metrics” on page 14-42

HIS Metrics

Element Metric

comf Comment density of a file
path Number of paths through a function
goto Number of goto statements
vg Cyclomatic complexity
calling Number of calling functions
calls Number of calls
param Number of parameters per function
stmt Number of instructions per function
level Number of call levels in a function
return Number of return statements in a

function
vocf Language scope, an indicator of the cost

of maintaining or changing functions.
Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands

http://portal.automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1_e.pdf

 Elements in Custom SQO File

14-41

Element Metric

• N2 — Total number of operands

The computation is based on the
preprocessed source code. Consider the
following code.
int f(int i)

 {

 if (i == 1)

 return i;

 else

 return i * g(i-1);

 }

The code contains the following:

• Distinct operators — int, (,), {, if,
==, return, else, *, -, ;, and }

• Number of operators —12
• Number of operator occurrences —19
• Distinct operands — f, i, 1, and g
• Number of operands — 4
• Number of operand occurrences — 9

Therefore, the language scope for the code
is VOCF = (19 + 9) / (12 + 4), that
is, 1.8.

ap_cg_cycle Number of recursions
ap_cg_direct_cycle Number of direct recursions
Num_Unjustified_Violations Number of unjustified violations of MISRA

C rules specified by entries under the
element CodingRulesSet

Num_Unjustified_Red Number of unjustified red checks
Num_Unjustified_NT_Constructs Number of unjustified “Non-terminating

call” and “Non-terminating loop” checks
Num_Unjustified_Gray Number of unjustified gray “Unreachable

code” checks

14 Software Quality with Polyspace Metrics

14-42

Element Metric

Percentage_Proven_Or_Justified Percentage of justified orange checks,
calculated as
(green checks + justified orange checks) / (green checks + all orange checks)

Non-HIS Metrics

Element Description of metric

fco Estimated function coupling, which is calculated as
follows:

 SOC - DFF + 1

• SOC — Sum (over all file functions) of calls within
body of each function

• DFF — Number of defined file functions

Does not take into account member functions of a
template class or template functions. Computed metric
reflects coupling of non-template functions only.

flin Number of lines within function body
fxln Number of execution lines within function body

A variable declaration with initialization is treated as a
statement, but not as an execution line of function body.

ncalls Number of calls within function body

Includes explicit and implicit calls to constructors.
pshv Number of protected shared variables
unpshv Number of unprotected shared variables

 Polyspace Metrics Assumptions

14-43

Polyspace Metrics Assumptions

Polyspace makes the following assumptions when calculating metrics:

• Polyspace does not evaluate metrics for template functions or member functions of a
template class.

• A catch statement is treated as a control flow statement that generates two paths
and increments cyclomatic complexity by one.

• Explicit and implicit calls to constructors are taken into account in the computation of
the number of distinct calls (calls).

• The computation of the number of call graph cycles does not take into account
template functions or member functions of a template class.

14 Software Quality with Polyspace Metrics

14-44

Status Acronyms

When you click a link, StatusAcronym elements are passed to the Polyspace verification
environment. This feature allows you to define, through your Polyspace server, additional
items for the drop-down list of the Status field in Check Review.

Polyspace Metrics provides the following default elements:
<StatusAcronym Justified="yes" Name="Justify with code/model annotations"/>

<StatusAcronym Justified="yes" Name="No action planned"/>

The Name attribute specifies the name that appears on the Status field drop-down
list. If you specify the Justify attribute to be yes, then when you select the item, for
example, No action planned, the software automatically selects the Justified check
box. If you do not specify the Justify attribute, then the Justified check box is not
selected automatically.

You can remove the default elements and create new StatusAcronym elements, which
are available to users of your Polyspace server.

 Code Metrics

14-45

Code Metrics

The following table provides descriptions of the metrics that you see in the Code
Metrics view.

Level Metric name Description HIS metric?

Files Number of source files. No
Header Files Directly and indirectly included header files,

including Polyspace internal header files and
the header files included by these internal
files.

The number of included headers shows how
many header files are verified for the current
project.

No

Recursions Call graph recursions. Number of call cycles
over one or more functions.

If one function is at the same time directly
recursive (it calls itself) and indirectly
recursive, the call cycle is counted only once.

Call cycle through pointer is not considered.

Yes

Direct Recursions Number of direct recursions. Yes
Protected Shared
Variables

Number of protected shared variables.

Only Polyspace Code Prover provides this
metric using information from PASS0 of the
verification.

No

Project

Non-Protected
Shared Variables

Number of unprotected shared variables.

Only Polyspace Code Prover provides this
metric using information from PASS0 of the
verification.

No

File

Lines Number of lines.

Physical lines including comment and blank
lines

No

14 Software Quality with Polyspace Metrics

14-46

Level Metric name Description HIS metric?

Lines of Code Number of lines without comment, that is,
lines excluding blank or comment lines.

A line that contains code and comment is
counted.

See “Number of Lines of Code Calculation” on
page 14-57.

No

Comment Density Relationship of the number of comments
(outside and within functions) to the number
of statements.

An internal comment is a comment that
begins and/or ends with the source code line;
otherwise a comment is considered external.
In the comment density calculation, the
comments in the header file (before the first
preprocessing directive or the first token in
the source file) are ignored. Two comments
that are not separated by a token are
considered as one occurrence. The number
of statements within a file is the number of
semicolons in the preprocessed source code
except within for loops, structure or union
field definitions, comments, literal strings,
preprocessing directives, or parameters
lists in the scope of K & R style function
declarations.

The comment density is:

number of external comment occurrences /
number of statements

Yes

 Code Metrics

14-47

Level Metric name Description HIS metric?

Estimated Function
Coupling

Inter-file dependency.

Metric is equal to:

sum of call occurrences – number of functions
defined in the file + 1.

The function coupling is calculated in a
preprocessed file.

No

Lines Within Body Total number of lines in a function body,
including blank and comment lines: number
of lines between the first { and the last } of a
function body.

The number of lines within a function body
is calculated in the preprocessed file. If
a function body contains an #include
directive, the included file source code is
taken into account in the calculation of the
lines of this function.

The preprocessing directives lines are taken
into account in the calculation of the lines.

No

Function Executable Lines Total number of lines with source code tokens
between a function body '{' and '}' that
are not declarations (w/o static initializer),
comments, braces, or preprocessing
directives.

The number of execution lines within a
function body is calculated in a preprocessed
file.

If the function body contains an #include
directive, the included file source code is
taken into account in the calculation of the
execution lines of this function.

No

14 Software Quality with Polyspace Metrics

14-48

Level Metric name Description HIS metric?

Cyclomatic
Complexity

Number of decisions + 1. The ?: operator is
considered a decision, but the combination of
&& || is considered to be only one decision.

Yes

 Code Metrics

14-49

Level Metric name Description HIS metric?

Language Scope The language scope is an indicator of the cost
of maintaining or changing functions.

Metric value = (N1+N2) / (n1+n2)

where:

n1 = number of different operators

N1 = sum of all operators

n2 = number of different operands

N2 = sum of all operands

The computation is based on the preprocessed
source code.
Consider the following code.
int f(int i)

{

 if (i == 1)

 return i;

 else

 return i * g(i-1);

}

In this code, the:

• Distinct operators are int, (,),{, if, ==,
return, else, *, -, ;, }

• Number of operators is 12
• Number of operator occurrences is 17
• Distinct operands are f, i, 1, g
• Number of operands is 4
• Number of operand occurrences is 9

For this example, the metric value is:
1.8 ((17 + 9) / (12 + 4))

Yes

14 Software Quality with Polyspace Metrics

14-50

Level Metric name Description HIS metric?

Paths Estimated static path count.

The following code contains one path.

switch (n)

 {

 case 1:

 case 2:

 case 3:

 case 4:

 default:

 break;

 }

The following code contains two paths.

switch (n)

 {

 case 1:

 case 2:

 break;

 case 3:

 case 4:

 default:

 break;

 }

Implicit else is considered as one path.

This value is not computed when a goto
exists within the function body.

Yes

Calling Functions Number of distinct callers of a function. Call
through pointer is not considered.

Yes

Called Functions Number of distinct functions called by
a function. Call through pointer is not
considered. See description for Call
Occurences

Yes

 Code Metrics

14-51

Level Metric name Description HIS metric?

Call Occurences Number of call occurrences within function
body.

Similar to Called Functions except that
each call of a function is counted.

Consider the following code.
int callee_1() {return 0;}

int callee_2() {return 0;}

int get()

{

 return callee_1() + callee_1() + callee_2() + callee_2();

}

For this code, the Called Functions value is
2 but the Call Occurences value is 4.

No

14 Software Quality with Polyspace Metrics

14-52

Level Metric name Description HIS metric?

Instructions Number of instructions per function, which is
a measure of function complexity.

Let STMT(function_code_element)
represent the metric value for
function_code_element. The following
applies:

STMT (simple_statement) = 1

STMT (empty_statement) = 0

STMT (label) = 0

STMT (block) = STMT (block_body)

STMT (declaration_
without_initializer) = 0;

STMT (declaration_with_
initializer) = 1;

STMT (other_statements) = 1 where
other_statements are break, continue,
do-while, for, goto, if, return, switch,
while.

Yes

 Code Metrics

14-53

Level Metric name Description HIS metric?

Call Levels Maximum depth of nesting of control flow
structures such as if, switch, for or while
inside a function body.

In the following code, the function foo has a
call level of 3.

int foo(int &x, int &y)

{

 int ret = 0;

 if (x == 0)

 /* call level 1 */

 {

 ret = 0;

 }

 else if (x >= y)

 /* call level 2 */

 {

 ret = 0;

 }

 else

 {

 while(x<y)

 /* call level 3 */

 {

 x+=2;

 ret++;

 }

 }

 return ret;

}

If there are no control flow structures, the
call level is 1.

To improve code readability, reduce this
metric. For instance, in the above code, you
can convert the content of the else branch
into a separate function and call that function
from the else branch. This action reduces
the call level to 2.

Yes

14 Software Quality with Polyspace Metrics

14-54

Level Metric name Description HIS metric?

Function Parameters Number of parameters per function. A
measure of the complexity of the function
interface.

Ellipsis (...) parameter is ignored.

Yes

Goto Statements Number of goto statements within a
function.

break and continue are not counted as
goto statements.

If this value is > 0, the number of Paths
cannot be computed.

Yes

Return Points Number of return points within a function.

Number of explicit return statements within
a function body.

The following function has zero return points:
void f(void) {},

The following function has one return point:
void f(void) {return;}

Yes

 Run-Time Checks

14-55

Run-Time Checks

Some of the columns on the Run-Time Checks tab are described below. You can group
the information in the columns by Files or Run-Time Categories.

Name Description

Run-Time Selectivity Percentage of checks that returned either
red or green.

Checks Number of checks of a certain color
Reviewed Red, gray or orange checks for which you

have performed the following actions in the
Polyspace user interface:

• You have entered review information
such as Classification and Status.

• You have saved the review information
in the Polyspace Metrics repository

using the button.

Depending on your Display Mode, this
metric is:

• Expressed as a number or percentage.
• Replaced by the To Review metric.

Path-Related Issues Number of checks in a function body that
are orange because a fraction of calls to the
function cause a run-time error. For more
information, see “Path”.

Bounded Input Issues Number of checks in a function body that
are orange because a fraction of the inputs
to the function cause a run-time error. The
checks come under the category Bounded
Input Issues if you restrict the inputs
using Data Range Specifications. For
more information, see “Bounded Input
Values”.

14 Software Quality with Polyspace Metrics

14-56

Name Description

Unbounded Input Issues Number of checks in a function body
that are orange because a fraction of
the inputs to the function cause a run-
time error. The checks come under the
category Unbounded Input Issues if
you do not restrict the input values. For
more information, see “Unbounded Input
Values”.

Review Progress Checks that you have reviewed. This
column aggregates the information in the
three Reviewed columns.

Depending on your Display Mode, this
metric is:

• Expressed as a number or percentage.
• Replaced by the Remaining Review

Work column.

Related Examples
• “Review Results”

More About
• “Code Metrics”
• “Data Range Specifications”

 Number of Lines of Code Calculation

14-57

Number of Lines of Code Calculation

For the following code, the line count in a text editor is 15 lines.

1 #include <stddef.h>

2

3 unsigned char v1,v2,v3;

4

5 unsigned char myfunc(void)

6 {

7 if(v1>v2)

8 {

9 v3=v2

10 + v1;

11 }

12

13 return v3;

14 }

15

Polyspace Metrics calculates the following:

• Number of lines — 14
• Number of lines of code — 11
• Number of lines within body — 7
• Executables lines — 4

The verification log file displays the following:

• Lines of code — 14
• Lines of code without comments — 11

14 Software Quality with Polyspace Metrics

14-58

Administer Results Repository

In this section...

“Administer Repository Through Web Browser” on page 14-58
“Administer Repository From Command Line” on page 14-58
“Backup Results Repository” on page 14-60

Administer Repository Through Web Browser

To rename a project:

1 In your Polyspace Metrics project index, right-click the row with the project that you
want to rename.

2 From the context menu, select Rename Project.
3 In the Project field, enter the new name.

To delete a project:

1 In your Polyspace Metrics project index, right-click the row with the project that you
want to delete.

2 From the context menu, select Delete Project from Repository.

To rename a verification:

1 Select the Summary view for your project.
2 In the Verification column, right-click the verification that you want to rename.
3 From the context menu, select Rename Run.
4 In the Project field, edit the text to rename the verification.

To delete a verification:

1 Select the Summary view for your project.
2 In the Verification column, right-click the verification that you want to delete.
3 From the context menu, select Delete Run from Repository.

Administer Repository From Command Line

You can run the following batch command with various options.

 Administer Results Repository

14-59

MATLAB_Install/polyspace/bin/polyspace-results-repository[.exe]

• To rename a project or version, use the following options:

[-f] [-server hostname] -rename [-prog old_prog -new-prog new_prog]

[-verif-version old_version -new-verif-version new_version]

• hostname — Polyspace server. localhost if you run the command directly on the
server.

• old_prog — Current project name
• new_prog — New project name
• old_version — Old version name
• new_version — New version name
• -f — Specifies that confirmation is not requested

• To delete a project or version, use the following options:

[-f] [–server hostname] -delete -prog prog [-verif-version version]

[-unit-by-unit|-integration]

• hostname — Polyspace server. localhost if you run the command directly on the
server.

• prog — Project name
• version — Version name. If omitted, all versions are deleted
• unit-by-unit|-integration — Delete only unit-by-unit or integration

verifications
• -f — Specifies that confirmation is not requested

• To get information about other commands, for example, retrieve a list of projects or
versions, and download and upload results, use the -h option.

Renaming and Deleting Verifications From the Command Line

To change the name of the project psdemo_model_link_sl to Track_Quality:
polyspace-results-repository.exe -prog psdemo_model_link_sl

-new-prog Track_Quality -rename

To delete the fifth verification run with version 1.0 of the project Track_Quality:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0

-run-number 5 -delete

14 Software Quality with Polyspace Metrics

14-60

To rename verification 1.2 as 1.0:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.2

-new-verif-version 1.0 -rename

To rename the fourth verification run with version 1.0 as version 0.4:
polyspace-results-repository.exe -prog Track_Quality -verif-version 1.0

-run-number 4 -new-verif-version 0.4 -rename

Backup Results Repository

To preserve your Polyspace Metrics data, create a backup copy of the results repository
PolyspaceRLDatas/results-repository — PolyspaceRLDatas is the path to
the folder where Polyspace stores data generated by remote verifications. See “Set Up
Polyspace Metrics”.

For example, on a Linux system, do the following:

1 $cd PolyspaceRLDatas

2 $zip -r Path_to_backup_folder/results-repository.zip results-

repository

If you want to restore data from the backup copy:

1 $cd PolyspaceRLDatas

2 $unzip Path_to_backup_folder/results-repository.zip

15

Configure Model for Code Analysis

• “Model Configuration for Code Generation and Analysis” on page 15-2
• “Configure Simulink Model” on page 15-3
• “Recommended Model Settings for Code Analysis” on page 15-4
• “Check Simulink Model Settings” on page 15-5
• “Check Simulink Model Settings Before Code Generation” on page 15-6
• “Check Simulink Model Settings Before Analysis” on page 15-8
• “Annotate Blocks for Known Errors or Coding-Rule Violations” on page 15-10

15 Configure Model for Code Analysis

15-2

Model Configuration for Code Generation and Analysis

To facilitate Polyspace code analysis and the review of results:

• There are certain settings that you should apply to your model before generating code.
See “Recommended Model Settings for Code Analysis” on page 15-4.

• The Polyspace plug-in for Simulink software allows you to check your model
configuration before starting the Polyspace software. See “Check Simulink Model
Settings” on page 15-5

• You can constrain signals in your model to lie within specified ranges. See “Specify
Signal Ranges”.

• You can highlight blocks that you know contain checks or coding rule violations. See
“Annotate Blocks for Known Errors or Coding-Rule Violations” on page 15-10.

 Configure Simulink Model

15-3

Configure Simulink Model

To configure a Simulink model for code generation and analysis:

1 Open Model Explorer.
2 From the Model Hierarchy tree, expand the model node.
3 Select Configuration > Code Generation, which displays Code Generation

configuration parameters.
4 Select the General tab, and then set the System target file to an Embedded

Coder .tlc file. For example, ert.tlc (Embedded Coder) or autosar.tlc
(Embedded Coder).

5 In the Report tab, select:

• Create code-generation report
• Code-to-model navigation.

6 In the Templates tab, clear Generate an example main program.
7 In the Interface tab, select Suppress error status in real-time model data

structure.
8 Click Apply.
9 Select Configuration > Solver, which displays Solver configuration parameters.
10 In the Solver options section, set:

• Type to Fixed-step.
• Solver to discrete (no continuous states).

11 Click Apply.
12 Select Configuration > Optimization, which displays Optimization configuration

parameters. Then:

• On the General tab, in the Data initialization section, select the Remove root
level I/O zero initialization check box.

• On the General tab, clear the Use memset to initialize floats and doubles to
0.0 check box

• On the Signals and Parameters tab, in the Simulation and code generation
section, select the Inline parameters check box.

13 Save your model.

15 Configure Model for Code Analysis

15-4

Recommended Model Settings for Code Analysis

For Polyspace analyses, you should configure your model with the following settings
before generating code.

Parameter Recommended value How you specify value in
Configuration Parameters dialog
box

If you do not use
recommended
value...

InitFltsAndDblsTo

Zero

'on' Select check box
Optimization > Use
memset to initialize floats
and doubles to 0.0

Warning

InlineParams 'on' Select check box
Optimization > Signals
and Parameters > Inline
parameters

Warning

MatFileLogging 'off' Clear check box Code
Generation > Interface >
MAT-file logging

Warning

Solver 'FixedStepDiscrete'In Solver > Solver, select
discrete (no continuous

states) from drop-down list.

Warning

SystemTargetFile An Embedded Coder
Target Language
Compiler (TLC) file

In Code Generation >
System target file, specify
an Embedded Coder target
file. For example ert.tlc or
autosar.tlc.

Error

GenerateComments 'on' Select check box Code
Generation > Comments >
Include Comments

Error

ZeroExternalMemory

AtStartup

'off' when
Configuration
Parameters >
Polyspace > Data
Range Management
> Output is Global
assert

Clear check box
Optimization > Remove
root level I/O zero
initialization

Warning

 Check Simulink Model Settings

15-5

Check Simulink Model Settings

With the Polyspace plug-in, you can check your model settings before starting an
analysis.

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

You can also set the configuration check to run before you run an analysis.

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

Related Examples
• “Check Simulink Model Settings Before Analysis” on page 15-8

More About
• “Recommended Model Settings for Code Analysis” on page 15-4

15 Configure Model for Code Analysis

15-6

Check Simulink Model Settings Before Code Generation

Before generating code, you can check your model settings against the “Recommended
Model Settings for Code Analysis” on page 15-4.

1 From the Simulink model window, select Code > C/C++ Code > Code Generation
Options. The Configuration Parameters dialog box opens, displaying the Code
Generation pane.

2 Select Set Objectives.
3 From the Set Objective – Code Generation Advisor window, add the Polyspace

objective and any others that you want to check.
4 From the Check model before generating code drop-down list, select either:

• On (stop for warnings)

• On (proceed with warnings)

5 Select Build or Generate Code.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

If you select:

 Check Simulink Model Settings Before Code Generation

15-7

• On (stop for warnings), the process stops for either errors or warnings
without generating code.

• On (proceed with warnings) — the process stops for errors, but continues
generating code if the configuration only has warnings.

Related Examples
• “Check Simulink Model Settings Before Analysis” on page 15-8
• “Check Simulink Model Settings” on page 15-5

More About
• “Recommended Model Settings for Code Analysis” on page 15-4

15 Configure Model for Code Analysis

15-8

Check Simulink Model Settings Before Analysis

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 From the Check configuration before verification menu, select either:

• On (stop for warnings) — will
• On (proceed with warnings)

3 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

If you select:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings) — the analysis stops for errors, but continues

the code analysis if the configuration only has warnings.

 Check Simulink Model Settings Before Analysis

15-9

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

Related Examples
• “Check Simulink Model Settings” on page 15-5

More About
• “Recommended Model Settings for Code Analysis” on page 15-4

15 Configure Model for Code Analysis

15-10

Annotate Blocks for Known Errors or Coding-Rule Violations

You can annotate individual blocks in your Simulink model to inform Polyspace software
of known defects, run-time checks, or coding-rule violations. This allows you to highlight
and categorize previously identified results, so you can focus on reviewing new results.

The Polyspace Results Manager perspective displays the information that you provide
with block annotations.

1 In the Simulink model window, right-click the block you want to annotate.
2 From the context menu, select Polyspace > Annotate Selected Block > Edit. The

Polyspace Annotation dialog box opens.

3 From the Annotation type drop-down list, select one of the following:

• Check — To indicate a Code Prover run-time error

 Annotate Blocks for Known Errors or Coding-Rule Violations

15-11

• Defect — To indicate a Bug Finder defect
• MISRA-C — To indicate a MISRA C coding rule violation
• MISRA-C++ — To indicate a MISRA C++ coding rule violation
• JSF — To indicate a JSF C++ coding rule violation

4 If you want to highlight only one kind of result, select Only 1 check and the
relevant error or coding rule from the Select RTE check kind (or Select defect
kind, Select MISRA rule, Select MISRA C++ rule, or Select JSF rule) drop-
down list.

If you want to highlight a list of checks, clear Only 1 check. In the Enter a list of
checks (or Enter a list of defects, or Enter a list of rule numbers) field, specify
the errors or rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

(This status also marks the result as justified.)
• No Action Planned

(This status also marks the result as justified.)
• Other

• Restart with different options

• Undecided

6 Select a Classification to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

7 In the Comment field, enter additional information about the check.
8 Click OK. The software adds the Polyspace annotation is to the block.

15 Configure Model for Code Analysis

15-12

16

Model Link for Polyspace Code Prover

• “Install Polyspace Plug-In for Simulink” on page 16-2
• “Specify Signal Ranges” on page 16-3
• “Annotate Code to Justify Polyspace Checks” on page 16-8
• “Configure Data Range Settings” on page 16-10
• “Main Generation for Model Verification” on page 16-12
• “Embedded Coder Considerations” on page 16-14
• “TargetLink Considerations” on page 16-20
• “Generate and Verify Code with Configured Model” on page 16-23
• “View Results in Polyspace Code Prover” on page 16-25
• “Identify Errors in Simulink Models” on page 16-27
• “Troubleshoot Back to Model” on page 16-29

16 Model Link for Polyspace Code Prover

16-2

Install Polyspace Plug-In for Simulink

By default, when you install Polyspace R2013b or later, the Simulink plug-in is installed
and connected to MATLAB.

If you model on a previous version of Simulink and MATLAB, you can also connect the
Polyspace plug-in on this previous version. That way you use the latest verification
software with your preferred version of Embedded Coder or TargetLink®. However, if
you use a cross-version of Polyspace and MATLAB, local batch analyses can only be
submitted from the Polyspace environment. or using the pslinkrun command.

The Simulink plug-in supports the four previous releases of MATLAB. For example, the
R2014b version of the Polyspace plug-in supports MATLAB R2012b, R2013a, R2013b,
R2014a, and R2014b

Note: To install a newer version of Polyspace on MATLAB R2013b or later, you must
install MATLAB without the corresponding version of Polyspace.

1 Using an account with read/write privileges, open the older version of MATLAB.
2 If you have a previous version of Polyspace connected, execute the

pslinksetup('uninstall') command to disconnect it. This command does not
work with MATLAB R2013b or later (see preceding Note).

3 Restart MATLAB.
4 Change your Current Folder to matlabroot\polyspace\toolbox\pslink

\pslink. matlabroot is the Simulink plug-in that you want to connect, for
example, C:\Program Files\MATLAB\R2014b.

5 Execute the pslinksetup('install') command to connect the new version of
Polyspace.

More About
• “Troubleshoot Back to Model”

 Specify Signal Ranges

16-3

Specify Signal Ranges

If you constrain signals in your Simulink model to lie within specified ranges, Polyspace
software automatically applies these constraints during verification of the generated
code. This can reduce the number of orange checks in your verification results.

You can specify a range for a model signal by:

• Applying constraints through source block parameters. See “Specify Signal Range
through Source Block Parameters” on page 16-3.

• Constraining signals through the base workspace. See “Specify Signal Range through
Base Workspace” on page 16-4.

Note: You can also manually define data ranges using the DRS feature in the Polyspace
verification environment. If you manually define a DRS file, the software automatically
appends any signal range information from your model to the DRS file. However,
manually defined DRS information overrides information generated from the model for
all variables.

Specify Signal Range through Source Block Parameters

You can specify a signal range by applying constraints to source block parameters.

Specifying a range through source block parameters is often easier than creating
signal objects in the base workspace, but must be repeated for each source block. For
information on using the base workspace, see “Specify Signal Range through Base
Workspace” on page 16-4.

To specify a signal range using source block parameters:

1 Double-click the source block in your model. The Source Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.
3 Specify the Minimum value for the signal, for example, -15.
4 Specify the Maximum value for the signal, for example, 15.

16 Model Link for Polyspace Code Prover

16-4

5 Click OK.

Specify Signal Range through Base Workspace

You can specify a signal range by creating signal objects in the MATLAB workspace.
This information is used to initialize each global variable to the range of valid values, as
defined by the min-max information in the workspace.

 Specify Signal Ranges

16-5

Note: You can also specify a signal range by applying constraints to individual source
block parameters. This method can be easier than creating signal objects in the base
workspace, but must be repeated for each source block. For more information, see
“Specify Signal Range through Source Block Parameters” on page 16-3.

To specify an input signal range through the base workspace:

1 Configure the signal to use, for example, the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Properties. The Signal
Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entry1.
c Select the Code Generation tab.
d From the Package drop-down menu, select Simulink.
e In the Storage class drop-down menu, select ExportedGlobal.

16 Model Link for Polyspace Code Prover

16-6

f Click OK, which applies your changes and closes the dialog box.

Note: For information about supported storage classes, see “Data Range
Specifications”.

2 Using Model Explorer, specify the signal range:

a Select Tools > Model Explorer to open Model Explorer.
b From the Model Hierarchy tree, select Base Workspace.
c Click the Add Simulink Signal button to create a signal. Rename this signal,

for example, my_entry1.
d Set the Minimum value for the signal, for example, to -15.
e Set the Maximum value for the signal, for example, to 15.
f From the Storage class drop-down list, select ExportedGlobal.

 Specify Signal Ranges

16-7

g Click Apply.

16 Model Link for Polyspace Code Prover

16-8

Annotate Code to Justify Polyspace Checks

A verification of Embedded Coder generated code might highlight overflows for certain
operations that are legitimate because of the way Embedded Coder implements these
operations. Consider the following model and the corresponding generated code.

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 + sat_add_U.In2;

37 if ((sat_add_U.In1 < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {

38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.In1 > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {

41 qY_0 = MAX_int32_T;

42 }

43 }

Embedded Coder software recognizes that the largest built-in data type is 32-bit. It is not
possible to saturate the results of the additions and subtractions using MIN_INT32 and
MAX_INT32, and a bigger single-word integer data type. Instead the software detects the
results overflow and the direction of the overflow, and saturates the result.

If you do not provide justification for the addition operator on line 36, a Polyspace
verification generates an orange check that indicates a potential overflow. The
verification does not take into account the saturation function of lines 37 to 43. In
addition, the trace-back functionality of Polyspace Code Prover does not identify the
reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

• Under Overall control, select the Include comments check box.
• Under Auto generate comments, select the Operator annotations check box.

 Annotate Code to Justify Polyspace Checks

16-9

When you generate code, the Embedded Coder software annotates the code with
comments for Polyspace. For example:

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 +/*MW:OvOk*/ sat_add_U.In2;

When you run a verification using Polyspace Code Prover, the software uses the
annotations to justify the operator-related orange checks and assigns the Not a defect
classification to the checks.

16 Model Link for Polyspace Code Prover

16-10

Configure Data Range Settings

There are two approaches to code verification, which can produce results that are slightly
different:

• Contextual Verification — Prove code does not generate run-time errors under
predefined working conditions. This limits the scope of the verification to specific
variable ranges, and verifies the code within these ranges.

• Robustness Verification — Prove code generate run-time errors for all verification
conditions, including “abnormal” conditions for which the code was not designed. This
can be thought of as “worst case” verification.

For more information, see:

• “Provide Context for C Code Verification”
• Data Range Specifications for Embedded Coder
• Data Range Specifications for TargetLink

Note: The software supports data range management only with Simulink Version 7.4
(R2009b) or later.

You perform contextual or robustness verification by the way you specify data ranges for
model inputs, outputs, and tunable parameters within the model.

 Configure Data Range Settings

16-11

To specify data range settings for your model:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace Model Link
pane.

2 In the Data Range Management section, specify how you want the verification to
treat:

a Input — Select one of the following:

• Use specified minimum and maximum values (Default) — Apply data
ranges defined in blocks or base workspace to increase the precision of the
verification. See “Specify Signal Ranges”.

• Unbounded inputs — Assume all inputs are full-range values (min...max)
b Tunable parameters — Select one of the following:

• Use calibration data (Default) — Use value of constant parameter
specified in code.

• Use specified minimum and maximum values — Use a parameter
range defined in the block or base workspace. See “Specify Signal Ranges”. If
no range is defined, use full range (min...max).

c Output — Select one of the following:

• No verification (Default) — No assertion ranges on outputs.
• Verify outputs are within minimum and maximum values — Use

assertion ranges on outputs.

Note: This mode is incompatible with the Automatic Orange Tester.

In general, you should use the following combinations:

• To maximize verification precision, select Use specified minimum and maximum
values for Input and Tunable parameters.

• To verify the extreme cases of program execution, select Unbounded inputs for
Input and Use calibration data for Tunable parameters.

16 Model Link for Polyspace Code Prover

16-12

Main Generation for Model Verification

When you run a verification, the software automatically reads the following information
from the model:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

The software then uses this information to generate a main function that:

1 Initializes parameters using the Polyspace option -variables-written-before-
loop.

2 Calls initialization functions using the option -functions-called-before-loop.
3 Initializes inputs using the option -variables-written-in-loop.
4 Calls the step function using the option -functions-called-in-loop.
5 Calls the terminate function using the option -functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the software
considers all variables as entries, except for parameters and outputs.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions are either class methods or have global scope. These different
scopes contain the associated variables.

• For class methods in the generated code, the variables that are written before and in
the loop refer to the class members.

• For functions with global scope, the associated variables are also in the global scope.

main for Generated Code

The following example shows the main generator options that the software uses to
generate the main function for code generated from a Simulink model.
init parameters \\ -variables-written-before-loop

init_fct() \\ -functions-called-before-loop

 Main Generation for Model Verification

16-13

 while(1){ \\ start main loop

 init inputs \\ -variables-written-in-loop

 step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

16 Model Link for Polyspace Code Prover

16-14

Embedded Coder Considerations

In this section...

“Default Options” on page 16-14
“Data Range Specification” on page 16-14
“Recommended Polyspace options for Verifying Generated Code” on page 16-15
“Hardware Mapping Between Simulink and Polyspace” on page 16-19

Default Options

For Embedded Coder code, the software sets the following verification options by default:

-sources path_to_source_code

-desktop

-D PST_ERRNO

-D main=main_rtwec

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

-OS-target no-predefined-OS

-results-dir results

Note: matlabroot is the MATLAB installation folder.

Data Range Specification

You can constrain inputs, parameters, and outputs to lie within specified data ranges
for Embedded Coder and AUTOSAR with Embedded Coder. See “Configure Data Range
Settings” on page 16-10.

The software automatically creates a Polyspace “Data Range Specifications” file using
information from the MATLAB workspace and block parameters.

You can also manually define a DRS file using the Project Manager perspective of the
Polyspace verification environment. If you define a DRS file, the software appends the

 Embedded Coder Considerations

16-15

automatically generated information to the DRS file you create. Manually defined DRS
information overrides automatically generated information for all variables.

The software supports the automatic generation of data range specifications for the
following kinds of generated code:

• Code from standalone models
• Code from configured function prototypes
• Reusable code
• Code generated from referenced models and submodels

The software supports the automatic generation of data range specifications for only the
following signal and parameter storage classes:

• SimulinkGlobal

• ExportedGlobal

• Struct (Custom)

Recommended Polyspace options for Verifying Generated Code

For Embedded Coder code, the software automatically specifies values for the following
verification options:

• -main-generator

• -functions-called-in-loop

• -functions-called-before-loop

• -functions-called-after-loop

• -variables-written-in-loop

• -variables-written-before-loop

In addition, for the option -server, the software uses the value specified in the Send
to Polyspace server check box on the Polyspace pane. These values override the
corresponding option values in the Configuration pane of the Project Manager.

You can specify other verification options for your Polyspace Project through the
Polyspace Configuration pane. To open this pane:

16 Model Link for Polyspace Code Prover

16-16

1 In the Simulink model window, select Code > Polyspace > Options . The
Polyspace Model Link pane opens.

2 Click Configure. The Project Manager opens, displaying the Polyspace
Configuration pane.

The following table describes options that you should specify in your Polyspace project
before verifying code generated by Embedded Coder software.

Option Recommended
Value

Comments

Macros > Preprocessor
definitions

-D

See
Comments

Defines macro compiler flags used during compilation.

Use one -D for each line of the Embedded Coder
generated defines.txt file.

Polyspace Model Link™ SL does not do this by default.
Target & Compiler >
Target operating system

-OS-target

Visual Specifies the operating system target for Polyspace
stubs.

This information allows the verification to use system
definitions during preprocessing to analyze the
included files.

Target & Compiler >
Target processor type

-target

i386 Specifies the target processor type. This allows the
verification to consider the size of fundamental data
types and the endianess of the target machine.

You can configure and specify generic targets. For more
information, see “Target Processor Configuration”.

Environment Settings
> Code from DOS or
Windows file system

-dos

On You must select this option if the contents of the
include or source directory comes from a DOS or
Windows file system. The option allows the verification
to deal with upper/lower case sensitivity and control
characters issues.

Concerned files are:

• Header files – All include folders specified (-I
option)

 Embedded Coder Considerations

16-17

Option Recommended
Value

Comments

• Source files – All source files selected for the
verification (-sources option)

Check Behavior > Allow
negative operands for left
shifts

-allow-negative-

operand-in-shift

On Allows a shift operation on a negative number.

According to the ANSI standard, such a shift operation
on a negative number is illegal. For example, -2 << 2
If you select this option, Polyspace considers the
operation to be valid. For the given example, -2 << 2 =
-8

Verification Assumptions
> Ignore float rounding

-ignore-float-rounding

On Specifies how the verification rounds floats.

If this option is not selected, the verification rounds
floats according to the IEEE 754 standard – simple
precision on 32-bits targets and double precision on
targets that define double as 64-bits.

When you select this option, the verification performs
exact computation.

Selecting this option can lead to results that differ from
"real life," depending on the actual compiler and target.
Some paths may be reachable (or not reachable) for
the verification while they are not reachable (or are
reachable) for the actual compiler and target.

However, this option reduces the number of unproven
checks caused by float approximation.

16 Model Link for Polyspace Code Prover

16-18

Option Recommended
Value

Comments

Precision > Precision
level

-O

2 Specifies the precision level for the verification.

Higher precision levels provide higher selectivity at the
expense of longer verification time.

Begin with the lowest precision level. You can then
address red errors and gray code before rerunning the
Polyspace verification using higher precision levels.

Benefits:

A higher precision level contributes to a higher
selectivity rate, making results review more efficient
and hence making bugs in the code easier to isolate.

The precision level specifies the algorithms used to
model the program state space during verification:

• -O0 corresponds to static interval verification.
• -O1 corresponds to complex polyhedron model of

domain values.
• -O2 corresponds to more complex algorithms to

closely model domain values (a mixed approach with
integer lattices and complex polyhedrons).

• -O3 is suitable only for units smaller than 1,000
lines of code. For such code, selectivity may reach as
high as 98%, but verification may take up to an hour
per 1,000 lines of code.

 Embedded Coder Considerations

16-19

Option Recommended
Value

Comments

Precision > Verification
level

-to

See
comments

Specifies the phase after which the verification stops.

C source compliance checking – For C code,
when checking coding rule compliance only.

C++ source compliance checking – For C++ code,
when checking coding rule compliance only.

Software safelty analysis level 0 – When
verifying code for the first time.

Software safelty analysis level 4 – When
performing subsequent verifications of code.

Each verification phase improves the selectivity of your
results, but increases the overall verification time.

Improved selectivity can make results review more
efficient, and hence make bugs in the code easier to
isolate.

Begin by running -to pass0 (Software Safety
Analysis level 0) You can then address red errors
and gray code before relaunching verification using
higher integration levels.

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianess)
from Simulink model hardware configuration settings. The software maps Device
vendor and Device type settings on the Simulink Configuration Parameters >
Hardware Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

Note: The software creates a generic target for the verification.

16 Model Link for Polyspace Code Prover

16-20

TargetLink Considerations

In this section...

“TargetLink Support” on page 16-20
“Default Options” on page 16-20
“Data Range Specification” on page 16-21
“Lookup Tables” on page 16-21
“Code Generation Options” on page 16-21

TargetLink Support

For Windows, Polyspace Code Prover is tested with releases 3.4 and 3.5 of the dSPACE®

Data Dictionary version and TargetLink Code Generator.

As Polyspace Code Prover extracts information from the dSPACE Data Dictionary, you
must regenerate the code before performing a verification.

Default Options

The following default options are set by Polyspace:

-I path_to_source_code

-desktop

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic

-I dspaceroot\matlab\TL\srcfiles\Generic

-I dspaceroot\matlab\TL\srcfiles\i86\LCC

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-ignore-constant-overflows

-scalar-overflows-behavior wrap-around

Note: dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

 TargetLink Considerations

16-21

Data Range Specification

You can constrain inputs, parameters, and outputs to lie within specified data ranges.
See “Configure Data Range Settings”.

The software automatically creates a Polyspace “Data Range Specifications” file using
the dSPACE Data Dictionary for each global variable. The DRS information is used
to initialize each global variable to the range of valid values as defined by the min-
max information in the data dictionary. This allows Polyspace software to model every
value that is legal for the system during verification. Carefully defining the min-max
information in the model allows the verification to be more precise, because only the
range of real values is analyzed.

Note: Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a DRS file using the Project Manager perspective of the
Polyspace Verification Environment. If you define a DRS file, the software appends the
automatically generated information to the DRS file you create. Manually defined DRS
information overrides automatically generated information for all variables.

DRS cannot be applied to static variables. Therefore, the compilation flags -D static=
is set automatically. It has the effect of removing the static keyword from the code. If
you have a problem with name clashes in the global name space you may need to either
rename one of or variables or disable this option in Polyspace configuration.

Lookup Tables

The tool by default provides stubs for the lookup table functions. This behavior can be
disabled from the Polyspace menu. The dSPACE data dictionary is used to define the
range of their return values. Note that a lookup table that uses extrapolation will return
full range for the type of variable that it returns.

Code Generation Options

From the TargetLink Main Dialog, it is recommended to set the option Clean code and
deselect the option Enable sections/pragmas/inline/ISR/user attributes.

16 Model Link for Polyspace Code Prover

16-22

When installing the Polyspace Model Link TL product, the tlcgOptions variable has
been updated with 'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab
\Tl\config\codegen\tl_pre_codegen_hook.m' file).

Related Examples
• “Run Analysis for TargetLink” on page 18-6

External Web Sites
• dSPACE – TargetLink

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

 Generate and Verify Code with Configured Model

16-23

Generate and Verify Code with Configured Model

You can generate Embedded Coder code from the configured model
psdemo_model_link_sl. You can then run a Polyspace verification on the generated
code.

To open psdemo_model_link_sl in the Simulink model window:

1 In the MATLAB Command Window, enter psdemo_model_link_sl.

This command opens the psdemo_model_link_sl model that is
compatible with your version of MATLAB (either psdemo_model_link_sl,
psdemo_model_link_sl_v1, or psdemo_model_link_sl_v2).

To generate code and start the Polyspace verification:

1 Double-click the Reinstall the demo block to generate the legacy code related to the
S-function.

2 If you want to apply data ranges to the input parameters, double-click the green
block Use input constraints. To remove the data range constraints, double-click the
orange block Worst case inputs.

3 Right-click the subsystem controller.
4 From the context-menu, select C/C++ Code > Build This Subsystem.
5 In the Build code for Subsystem dialog box, click Build to generate code. When the

code generation is complete, the code generation report opens.
6 Right-click the subsystem controller. From the context menu, select Polyspace >

Verify Code Generated for > Selected Subsystem. The verification starts.

To monitor the progress of the verification:

• If you specified server verification, select Code > Polyspace > Open Job Monitor.
Use the Polyspace Job Monitor to monitor progress.

• If you specified client verification, you can monitor progress from the Command
Window.

Once the verification is complete, to display the results:

1 Select Code > Polyspace > Open Results > For Generated Code.
2 In the Polyspace environment, select File > Open Result.

16 Model Link for Polyspace Code Prover

16-24

3 Use the Open Results dialog box to navigate to the specified results folder, for
example, C:\Polyspace_Results\controller.

4 Select the results file, for example, RTE_px_controller_LAST_RESULTS.pscp.
Then click Open. The software displays the results in the Results Manager
perspective.

 View Results in Polyspace Code Prover

16-25

View Results in Polyspace Code Prover

When a verification completes, you can view the results using the Results Manager
perspective of the Polyspace Code Prover.

To view your results:

1 From the Simulink model window, select Code > Polyspace > Open Results.

Note: If you set Model reference verification depth to All and selected Model
by model verification, the Select the Result Folder to Open in Polyspace dialog
box opens. The dialog box displays a hierarchy of referenced models from which the
software generates code. To view the verification results for code generated from a
specific model, select the model from the hierarchy. Then click OK.

You can also open results through a Model block or subsystem. From the
Simulink model window, right-click the Model block or subsystem, and from the
context menu, select Polyspace > Open Results.

After a few seconds, the Results Manager perspective of the Polyspace Code Prover
opens.

2 On the Results Summary tab, click any check to review additional information.

In this example, the Check Details pane shows information about the orange check,
and the Source pane shows the source code containing the orange check.

16 Model Link for Polyspace Code Prover

16-26

For more information on reviewing run-time checks, see “Run-Time Error Review”.

For information on specific checks, see “Run-Time Check Reference”.

 Identify Errors in Simulink Models

16-27

Identify Errors in Simulink Models

With Polyspace Code Prover, you can trace run-time checks in your verification results
directly to your Simulink model.

Consider the following example, where the Check Details pane shows information about
an orange check, and the Source pane shows the source code containing the orange
check.

This orange check shows a potential overflow issue when multiplying the signals from
the inports In1 and In2. To fix this issue, you must return to the model.

To trace this run-time check to the model:

1 Click the blue underlined link (<Root>/Product) immediately before the check in
the Source pane. The Simulink model opens, highlighting the block with the error.

2 Examine the model to find the cause of the check.

16 Model Link for Polyspace Code Prover

16-28

In this example, the highlighted block multiplies two full-range signals, which could
result in an overflow. This could be a flaw in:

• Design — If the model is supposed to be robust for the full signal range, then the
issue is a design flaw. In this case, you must change the model to accommodate
the full signal range. For example, you could saturate the output of the previous
block, or bound the signal with a Switch block.

• Specifications — If the model is supposed to work for specific input ranges, you
can provide these ranges using block parameters or the base workspace. The
verification will then read these ranges from the model. See “Specify Signal
Ranges”.

Applying either solution should address the issue and cause the orange check to turn
green.

More About
• “Troubleshoot Back to Model”

 Troubleshoot Back to Model

16-29

Troubleshoot Back to Model

In this section...

“Back-to-Model Links Do Not Work” on page 16-29
“Your Model Already Uses Highlighting” on page 16-29

Back-to-Model Links Do Not Work

You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter PolySpaceEnableCOMserver.

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. To change the color of blocks when they are linked
to Polyspace results use this command:

HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...

 'BackgroundColor', color);

set_param(0, 'HiliteAncestorsData', HILITE_DATA)

Where color is one of the following:

• 'cyan'

• 'magenta'

• 'orange'

• 'lightBlue'

16 Model Link for Polyspace Code Prover

16-30

• 'red'

• 'green'

• 'blue'

• 'darkGreen'

17

Configure Code Analysis Options

• “Polyspace Configuration for Generated Code” on page 17-2
• “Include Handwritten Code” on page 17-3
• “Specify Remote Analysis” on page 17-4
• “Configure Analysis Depth for Referenced Models” on page 17-5
• “Specify Location of Results” on page 17-6
• “Check Coding Rules Compliance” on page 17-7
• “Configure Polyspace Analysis Options” on page 17-9
• “Configure Polyspace Project Properties” on page 17-11
• “Create a Polyspace Configuration File Template” on page 17-12
• “Specify Header Files for Target Compiler” on page 17-14
• “Open Polyspace Results Automatically” on page 17-15
• “Remove Polyspace Options From Simulink Model” on page 17-16

17 Configure Code Analysis Options

17-2

Polyspace Configuration for Generated Code

You do not have to manually create a Polyspace project or specify Polyspace options
before running an analysis for your generated code. By default, Polyspace automatically
creates a project and extracts the required information from your model. However, you
can modify or specify additional options for your analysis:

• You may incorporate separately created code within the code generated from your
Simulink model. See “Include Handwritten Code” on page 17-3.

• By default, the Polyspace analysis is contextual and treats tunable parameters as
constants. You can specify a verification that considers robustness, including tunable
parameters that lie within a range of values. See “Configure Data Range Settings”.

• You may customize the options for your analysis. For example, to specify the target
environment or adjust precision settings. See “Configure Polyspace Analysis Options”
on page 17-9 and “Recommended Polyspace options for Verifying Generated
Code”.

• You may create specific configurations for batch runs. See “Create a Polyspace
Configuration File Template” on page 17-12.

• If you want to analyze code generated for a 16-bit target processor, you must specify
header files for your 16-bit compiler. See “Specify Header Files for Target Compiler”
on page 17-14.

 Include Handwritten Code

17-3

Include Handwritten Code

Files such as S-function wrappers are, by default, not part of the Polyspace analysis.
However, you can add these files manually.

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select the Enable additional file list check box. Then click Select files. The Files
Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.
4 Use the Select files to add dialog box to:

• Navigate to the relevant folder
• Add the required files.

The software displays the selected files as a list under Additional files to analyze.

Note: To remove a file from the list, select the file and click Remove. To remove all
files from the list, click Remove all.

5 Click OK.

17 Configure Code Analysis Options

17-4

Specify Remote Analysis

By default, the Polyspace software runs locally. To specify a remote analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select Configure.
3 In the Polyspace Configuration window, select the Distributed Computing pane.
4 Select the Batch check box.
5 Close the configuration window and save your changes.
6 Select Apply.

 Configure Analysis Depth for Referenced Models

17-5

Configure Analysis Depth for Referenced Models

From the Polyspace pane, you can specify the analysis of generated code with respect to
model reference hierarchy levels:

• Model reference verification depth — From the drop-down list, select one of the
following:

• Current model only — Default. The Polyspace runs code from the top level
only. The software creates stubs to represent code from lower hierarchy levels.

• 1 — The software analyzes code from the top level and the next level. For
subsequent hierarchy levels, the software creates stubs.

• 2 — The software analyzes code from the top level and the next two hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• 3 — The software analyzes code from the top level and the next three hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• All — The software analyzes code from the top level and all lower hierarchy
levels.

• Model by model verification — Select this check box if you want the software to
analyze code from each model separately.

Note: The same configuration settings apply to all referenced models within a top model.
It does not matter whether you open the Polyspace pane from the top model window
(Code > Polyspace > Options) or through the right-click context menu of a particular
Model block within the top model. However, you can run analyses for code generated
from specific Model blocks. See “Run Analysis for Embedded Coder” on page 18-5.

17 Configure Code Analysis Options

17-6

Specify Location of Results

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens with the Polyspace pane displayed.

2 In the Output folder field, specify the full path for your results folder. By default,
the software stores results in C:\Polyspace_Results\results_model_name.

3 If you want to avoid overwriting results from previous analyses, select the Make
output folder name unique by adding a suffix check box. Instead of overwriting
an existing folder, the software specifies a new location for the results folder by
appending a unique number to the folder name.

 Check Coding Rules Compliance

17-7

Check Coding Rules Compliance

You can check compliance with MISRA AC AGC and MISRA C:2004, and MISRA C:2012
coding rules directly from your Simulink model.

In addition, you can choose to run coding rules checking either with or without full code
analysis.

To configure coding rules checking:

1 From the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

C 2004 checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2004 coding rules.

Project configuration and MISRA

C 2012 ACG checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA
C:2012 coding guidelines.

MISRA AC AGC checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

17 Configure Code Analysis Options

17-8

Setting Description

MISRA C 2004 checking Check compliance with MISRA C:2004
coding rules. Polyspace stops after rules
checking.

MISRA C 2012 ACG checking Check compliance with MISRA C:2012
coding rules using generated code
categories. Polyspace stops after
guideline checking.

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Configure Polyspace Analysis Options

17-9

Configure Polyspace Analysis Options

From Simulink, you can specify Polyspace options to change the configuration of the
Polyspace Analysis. For example, you can specify the processor type and operating
system of your target device.

For descriptions of options, see “Analysis Options for C Code” or “Analysis Options for C
Code”.

There are two ways to configure analysis options:

In this section...

“Use the Configuration Window” on page 17-9
“Link to a Configuration File” on page 17-9

Use the Configuration Window

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Configure.
3 In the Polyspace Configuration window, set options required by your application.

The first time you open the configuration, the software sets certain options
depending on your code generator.

Link to a Configuration File

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Use custom project file.
3 In the Use custom project file field, enter the full path to a .psprj file, or click

Browse for project file to browse for a .psprj file.

See Also
pslinkoptions

Related Examples
• “Create a Polyspace Configuration File Template” on page 17-12

17 Configure Code Analysis Options

17-10

• “Configure Polyspace Project Properties” on page 17-11

More About
• “Embedded Coder Considerations”
• “TargetLink Considerations”
• “Recommended Polyspace options for Verifying Generated Code”

 Configure Polyspace Project Properties

17-11

Configure Polyspace Project Properties

You can specify project properties, for example, your project name, through the Polyspace
Project - Properties dialog box. To open this dialog box:

1 From the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 Click Configure. The Polyspace configuration window opens.
3

On the Project Manager toolbar, click the Project properties icon .

17 Configure Code Analysis Options

17-12

Create a Polyspace Configuration File Template

During a batch run, you may want use different configurations. At the MATLAB
command-line, use “pslinkfun('settemplate',...)” to apply a configuration
defined by a configuration file template.

To create a configuration file template:

1 In the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 Click Configure. The Project Manager opens, displaying the Configuration pane.
Use this pane to customize the target and cross compiler.

3 From the Configuration tree, expand the Target & Compiler node.
4 In the Target Environment section, use the Target processor type option to

define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

 Create a Polyspace Configuration File Template

17-13

Use this dialog box to create a new target and specify data types for the target.
Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use the
Preprocessor definitions section to define preprocessor macros for your cross-
compiler.

To add a macro, in the Macros table, click the + button. In the new line, enter the
required text.

To remove a macro, select the macro and click the - button.

Note: If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Save your changes and close the Project Manager.
7 Make a copy of the updated project configuration file, for example,

my_first_code_polyspace.psprj.
8 Rename the copy, for example, my_cross_compiler.psprj. This is your new

configuration file template.

To use a configuration template, run the pslinkfun command in the MATLAB
Command Window. For example:

pslinkfun('settemplate','C:\Work\my_cross_compiler.psprj')

17 Configure Code Analysis Options

17-14

Specify Header Files for Target Compiler

If you want to analyze code generated for a 16-bit target processor, you must specify
header files for your 16-bit compiler. The software automatically identifies the compiler
from the Simulink model. If the compiler is 16-bit and you do not specify the relevant
header files, the software produces an error when you try to run an analysis.

Note: For a 32-bit or 64-bit target processor, the software automatically specifies the
default header file.

To specify header file folders (or header files) for your compiler:

1 Open the Polyspace Configuration pane. From the Simulink model window, select
Code > Polyspace > Options. The Polyspace pane opens.

2 Click Configure. The Project Manager opens, displaying the Configuration pane.
3 From the Configuration tree, expand the Target & Compiler node.
4 Select Target & Compiler > Environment Settings.
5 In the Include folders (or Include) section, specify a folder (or header file) path by

doing one of the following:

• Click the + button. Then, in the text field, enter the folder (or file) path.
• Click the folder button and use the Open file dialog box to navigate to the

required folder (or file).

You can remove an item from the displayed list by selecting the item and then
clicking -.

 Open Polyspace Results Automatically

17-15

Open Polyspace Results Automatically

You can configure the software to automatically open your Polyspace results after you
start the analysis. If you are doing a remote analysis, the Polyspace Metrics webpage
opens. When the remote job is complete, you can download your results from Polyspace
Metrics. If you are doing a local analysis, when the local job is complete, the Polyspace
environment opens the results in the Results Manager perspective.

To configure the results to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace pane opens.

2 In the Results review section, select Open results automatically after
verification.

3 Click Apply to save your settings.

17 Configure Code Analysis Options

17-16

Remove Polyspace Options From Simulink Model

You can remove Polyspace configuration information from your Simulink model.

For a top model:

1 Select Code > Polyspace > Remove Options from Current Configuration.
2 Save the model.

For a Model block or subsystem:

1 Right-click the Model block or subsystem.
2 From the context menu, select Polyspace > Remove Options from Current

Configuration.
3 Save the model.

18

Run Polyspace on Generated Code

• “Specify Type of Analysis to Perform” on page 18-2
• “Run Analysis for Embedded Coder” on page 18-5
• “Run Analysis for TargetLink” on page 18-6
• “Monitor Progress” on page 18-7

18 Run Polyspace on Generated Code

18-2

Specify Type of Analysis to Perform

Before running Polyspace, you can specify what type of analysis you want to run. You can
choose to run code analysis, coding rules checking, or both.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameter window opens to the Polyspace options pane.

2 In the Settings from drop-down menu, select the type of analysis you want to
perform.

Depending on the type of code generated, different settings are available. The
following tables describe the different settings.

C Code Settings

 Specify Type of Analysis to Perform

18-3

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

AC AGC rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA
AC-AGC rule set.

Project configuration and MISRA

rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with MISRA C
coding rules.

MISRA AC AGC rule checking Check compliance with the MISRA AC-
AGC rule set. Polyspace stops after rules
checking.

MISRA rule checking Check compliance with MISRA C
coding rules. Polyspace stops after rules
checking.

18 Run Polyspace on Generated Code

18-4

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the options
specified in the Project configuration.

Project configuration and MISRA

C++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with the MISRA C
++ coding rules.

Project configuration and JSF C

++ rule checking

Run Polyspace using the options
specified in the Project configuration
and check compliance with JSF C++
coding rules.

MISRA C++ rule checking Check compliance with the MISRA C++
coding rules. Polyspace stops after rules
checking.

JSF C++ rule checking Check compliance with JSF C++ coding
rules. Polyspace stops after rules
checking.

3 Click Apply to save your settings.

 Run Analysis for Embedded Coder

18-5

Run Analysis for Embedded Coder

To start Polyspace with:

• Code generated from the top model, from the Simulink model window, select Code >
Polyspace > Verify Code Generated for > Model.

• All code generated as model referenced code, from the model window, select Code >
Polyspace > Verify Code Generated for > Referenced Model.

• Model reference code associated with a specific block or subsystem, right-click the
Model block or subsystem. From the context menu, select Verify Code Generated
for > Selected Subsystem.

Note: You can also start the Polyspace software from the Polyspace configuration
parameter pane by clicking Run verification.

When the Polyspace software starts, messages appear in the MATLAB Command
window:
Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code

 for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

 System : my_first_code

 Results Folder : C:\PolySpace_Results\results_my_first_code

 Additional Files : 0

 Remote : 0

 Model Reference Depth : Current model only

 Model by Model : 0

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

...

Follow the progress of the analysis in the MATLAB Command window. If you are
running a remote, batch, analysis you can follow the later stages through the Polyspace
Job Monitor.

The software writes status messages to a log file in the results folder, for example
Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

18 Run Polyspace on Generated Code

18-6

Run Analysis for TargetLink

To start the Polyspace software:

1 In your model, select the Target Link subsystem.
2 In the Simulink model window select Code > Polyspace > Verify Code

Generated for > Selected Target Link Subsystem.

Messages appear in the MATLAB Command window:
Starting Polyspace verification for Embedded Coder

Creating results folder results_WhereAreTheErrors_v2

 for system WhereAreTheErrors_v2

Parameters used for code verification:

 System : WhereAreTheErrors_v2

 Results Folder : H:\Desktop\Test_Cases\ModelLink_Testers

 \results_WhereAreTheErrors_v2

 Additional Files : 0

 Verifier settings : PrjConfig

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

 Model Reference Depth : Current model only

 Model by Model : 0

The exact messages depend on the code generator you use and the Polyspace
product. The software writes status messages to a log file in the results folder, for
example Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

Follow the progress of the software in the MATLAB Command Window. If you are
running a remote, batch analysis, you can follow the later stages through the Polyspace
Job Monitor

Note: Verification of a 3,000 block model will take approximately one hour to verify, or
about 15 minutes for each 2,000 lines of generated code.

 Monitor Progress

18-7

Monitor Progress

In this section...

“Local Analyses” on page 18-7
“Remote Batch Analyses” on page 18-7

Local Analyses

For a local Polyspace runs, you can follow the progress of the software in the MATLAB
Command Window. The software also saves the status messages to a log file in the
results folder. For example:

Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

Remote Batch Analyses

For a remote analysis, you can follow the initial stages of the analysis in the MATLAB
Command window.

Once the compilation phase is complete, you can follow the progress of the software using
the Polyspace Job Monitor.

From Simulink, select Code > Polyspace > Open Job Monitor

For more information, see “Verification Management”.

18-8

19

Using Polyspace Software in the
Eclipse IDE

• “Install Polyspace Plug-In for Eclipse” on page 19-2
• “Verify Code in the Eclipse IDE” on page 19-5

19 Using Polyspace Software in the Eclipse IDE

19-2

Install Polyspace Plug-In for Eclipse

In this section...

“Install Polyspace Plug-In for Eclipse IDE” on page 19-2
“Uninstall Polyspace Plug-In for Eclipse IDE” on page 19-4

Install Polyspace Plug-In for Eclipse IDE

You can install the Polyspace plug-in only after you:

• Install and set up Eclipse Integrated Development Environment (IDE). For more
information, see the Eclipse documentation at www.eclipse.org.

• Install Java 7. See Java documentation at www.java.com.
• Uninstall any previous Polyspace plug-ins. For more information, see “Uninstall

Polyspace Plug-In for Eclipse IDE” on page 19-4.

To install the Polyspace plug-in:

1 From the Eclipse editor, select Help > Install New Software. The Install wizard
opens, displaying the Available Software page.

2 Click Add to open the Add Repository dialog box.
3 In the Name field, specify a name for your Polyspace site, for example,

Polyspace_Eclipse_PlugIn.
4 Click Local, to open the Browse for Folder dialog box.
5 Navigate to the MATLAB_Install\matlab\polyspace\plugin\eclipse folder.

Then click OK.

MATLAB_Install is the installation folder for the Polyspace product, for example:

C:\Program Files\MATLAB\R2013b

6 Click OK to close the Add Repository dialog box.
7 On the Available Software page, select Polyspace Plugin for Eclipse.

http://www.eclipse.org/
http://www.java.com

 Install Polyspace Plug-In for Eclipse

19-3

8 Click Next.
9 On the Install Details page, click Next.
10 On the Review Licenses page, review and accept the licence agreement. Then click

Finish.

Once you install the plug-in, in the Eclipse editor, you’ll see:

• A Polyspace menu
• A Polyspace Run view

19 Using Polyspace Software in the Eclipse IDE

19-4

Uninstall Polyspace Plug-In for Eclipse IDE

Before installing a new Polyspace plug-in, you must uninstall any previous Polyspace
plug-ins:

1 In Eclipse, select Help > About Eclipse.
2 Select Installation Details.
3 Select the Polyspace plug-in and select Uninstall.

Follow the uninstall wizard to remove the Polyspace plug-in. You must restart
Eclipse for changes to take effect.

 Verify Code in the Eclipse IDE

19-5

Verify Code in the Eclipse IDE

In this section...

“Workflow for Code Verification in Eclipse” on page 19-5
“Create Eclipse Project” on page 19-5
“Configure Polyspace Verification” on page 19-6
“Start Verification” on page 19-6
“Review Results” on page 19-7

Workflow for Code Verification in Eclipse

You can use Polyspace software to verify code that you develop within the Eclipse
Integrated Development Environment (IDE).

A typical workflow is:

1 Create an Eclipse project and develop code within your project.
2 Configure verification options.
3 Start the verification.
4 Review the verification results. Fix run-time errors and restart the verification.

Install the Polyspace plug-in for Eclipse IDE before you verify code in Eclipse IDE. For
more information, see “Install Polyspace Plug-In for Eclipse” on page 19-2.

Create Eclipse Project

If your source files do not belong to an Eclipse project, then create a project using the
Eclipse editor:

1 Select File > New > C Project.
2 Clear the Use default location check box.
3 Click Browse to navigate to the folder containing your source files, for example, C:

\Test\Source_C.
4 In the Project name field, enter a name, for example, Demo_C.
5 In the Project Type tree, under Executable, select Empty Project .

19 Using Polyspace Software in the Eclipse IDE

19-6

6 Under Toolchains, select your installed toolchain, for example, MinGW GCC.
7 Click Finish. An Eclipse project is created.

For information on developing code within Eclipse IDE, refer to www.eclipse.org.

Configure Polyspace Verification

To configure your verification:

1 In Project Explorer, select the project or files that you want to verify.
2 Select Polyspace > Configure Project to open the Configuration pane in the

Polyspace verification environment.
3 Select your options for the verification process.
4 Select File > Save to save your options.

For more information, see “Analysis Options for C Code”.

Note: Your Eclipse compiler options for include paths (-I) and symbol definitions (-D)
are automatically added to the list of Polyspace analysis options.

To view the -I and -D options in the Eclipse editor :

1 Select Project > Properties to open the Properties for Project dialog box.

2 In the tree, under C/C++ General , select Paths and Symbols .
3 Select Includes to view the -I options or Symbols to view the -D options.

Start Verification

To start a Polyspace verification from the Eclipse editor:

1 Select the file, files, or class that you want to verify.
2 Either right-click and select Run Polyspace Code Prover, or select Polyspace >

Run Polyspace.

You can see the progress of the verification in the Polyspace Run view. If you
see an error or warning during the compilation phase, double-click it to go to the

http://www.eclipse.org

 Verify Code in the Eclipse IDE

19-7

corresponding location in the source code. Once the verification is over, the results
are displayed on the Results Summary tab.

3 To stop a verification, select Polyspace > Stop Polyspace. Alternatively you can
use the button in the Polyspace Run view.

For more information, see “Monitor Progress of Verification”.

Review Results

You can examine results of the verification either in Eclipse or the Polyspace verification
environment.

• Eclipse:

After you run a verification in Eclipse, your results open automatically on the
Results Summary tab. Select a check to see detailed information on the Check
Details tab. If you close Eclipse or run Polyspace on another Eclipse project, your
results are closed. To reopen your results in Eclipse, select Polyspace > Reload
Results.

• Polyspace environment:

The results in Eclipse are overwritten every time a new verification is performed.
However, Polyspace automatically imports Status, Classification and Comment
information to the new verification. If you want to save your earlier results:

1 Select Polyspace > Open Results in PVE to open your results in the Polyspace
environment.

2 Upload your results to Metrics by selecting Metrics > Upload to Metrics

Related Examples
• “Results Summary”
• “Check Details”
• “Run-Time Error Review”

19-8

20

Using Polyspace Software in Visual
Studio

• “Install Polyspace Add-In for Visual Studio” on page 20-2
• “Verify Code in Visual Studio” on page 20-4

20 Using Polyspace Software in Visual Studio

20-2

Install Polyspace Add-In for Visual Studio

Install Polyspace Add-In for Visual Studio

The Polyspace Add-in is supported for Visual Studio 2008, 2010. You can install the
Polyspace add-in only after you:

• Install Visual Studio.
• Uninstall any previous Polyspace add-ins. For more information see “Uninstall

Polyspace Add-In for Visual Studio” on page 20-3.

To install the Polyspace add-in:

1 In the Visual Studio editor, select Tools > Options to open the Options dialog box.
2 Select the Environment > Add-in/Macros Security pane to display the list of

Visual Studio add-in folders.
3 Select the following check boxes:

• Allow macros to run
• Allow Add-in components to load

4 Click Add to open the Browse For Folder dialog box.
5 Navigate to MATLAB_Install\matlab\polyspace\plugin\msvc\VS_version

• MATLAB_Install is the installation folder for the Polyspace product, for
example:

C:\Program Files\MATLAB\R2013b

• VS_version corresponds to the version of Visual Studio that you have installed,
for example, 2010.

6 Click OK to close the Browse for Folder dialog box.
7 To close the Options dialog box, click OK.

You must restart Visual Studio for the changes to take effect. After you install the add-
in, the Visual Studio editor has:

• A Polyspace menu
• A Polyspace Log view

 Install Polyspace Add-In for Visual Studio

20-3

Uninstall Polyspace Add-In for Visual Studio

Before installing a new Polyspace add-in, you must uninstall any previous Polyspace add-
ins.

1 In the Visual Studio editor, select Tools > Options to open the Options dialog box.
2 Select the Environment > Add-in/Macros Security pane to display the list of

Visual Studio add-in folders.
3 Select the Polyspace add-in and select Remove.
4 To close the Options dialog box, click OK.

You must restart Visual Studio for the changes to take effect.

20 Using Polyspace Software in Visual Studio

20-4

Verify Code in Visual Studio

In this section...

“Code Verification in Visual Studio” on page 20-4
“Create Visual Studio Project” on page 20-4
“Verify Code in Visual Studio” on page 20-5
“Monitor Verification in Visual Studio” on page 20-12
“Review Verification Results in Visual Studio” on page 20-14

Code Verification in Visual Studio

You can apply the powerful code verification functionality of Polyspace software to code
that you develop within the Visual Studio Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Visual Studio editor to create a project and develop code within this project.
2 Set up the Polyspace verification by configuring analysis options and settings, and

then start the verification.
3 Monitor the verification.
4 Review the verification results.

Before you can verify code in Visual Studio, you must install the Polyspace add-in for
Visual.NET. For more information , see “Install Polyspace Add-In for Visual Studio” on
page 20-2.

Create Visual Studio Project

If your source files do not belong to a Visual Studio project, you can create a project using
the Visual Studio editor:

1 Select File > New > Project > New > Project Console Win32 to create a project
space

2 Enter a project name, for example, CppExample.

 Verify Code in Visual Studio

20-5

3 Save this project in a specific location, for example, C:\Polyspace\Visual. The
software creates some files and a Project Console Win32.

To add files to your project:

1 Select the Browse the solution tab.
2 Right-click the project name. From the pop-up menu, select Add > Add existing

element .
3 Add the files you want to the project (for example, CppExample).

Verify Code in Visual Studio

To set up and start a verification:

1 In the Visual Studio Solution Explorer view, select one or more files that you want
to verify.

2 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

20 Using Polyspace Software in Visual Studio

20-6

3 In the Easy Settings dialog box, you can specify the following options for your
verification:

• Under Settings, configure the following:

• Precision — Precision of verification (-0)
• Passes — Level of verification (-to)
• Results folder – Location where software stores verification results (-

results-dir)
• Under Verification Mode Settings, configure the following:

 Verify Code in Visual Studio

20-7

• Generate main or Use existing — Whether Polyspace generates a main
subprogram (-main-generator) or uses an existing subprogram (-main)

• Class — Name of class to verify (-class-analyzer)
• Class analyzer calls — Functions called by generated main subprogram (-

class-analyzer-calls)
• Class only — Verification of class contents only (-class-only)
• Main generator write — Type of initialization for global variables (-main-

generator-writes-variables)
• Main generator calls — Functions (not in a class) called by generated main

subprogram (-main-generator-calls)
• Function called before — Function called before all functions (-function-

call-before-main)
• Under Scope, you can modify the list of files and classes to verify.

For information on how to choose your options, see “Analysis Options for C++ Code”.

Note: In the Project Manager perspective of the Polyspace verification environment,
you configure options that you cannot set in the Easy Settings dialog box. See “Set
Standard Polyspace Options” on page 20-11.

4 Click Start to start the verification.

Verify Classes

In the Easy Settings dialog box, you can verify a C++ class by modifying the scope option.

To verify a class:

1 In the Visual Studio Solution Explorer, right-click a file and select Polyspace
Verification.

The Easy Settings dialog box opens.

20 Using Polyspace Software in Visual Studio

20-8

2
In the Scope window, click .

The Select Files and Classes dialog box opens.

 Verify Code in Visual Studio

20-9

3 Select the classes that you want to verify, then click Add.
4 In the Easy Settings dialog box, click Start to start the verification.

Verify an Entire Project

You can verify an entire project only through the Project Manager perspective of the
Polyspace verification environment (select Polyspace > Configure Project).

For information on using the Project Manager perspective , see “Project Manager
Verification”.

Import Visual Studio Project Information into Polyspace Project

You can extract information from a Visual Studio project file (vcproj) to configure your
Polyspace project.

This Visual Studio import feature can retrieve the following information from a Visual
Studio project:

20 Using Polyspace Software in Visual Studio

20-10

• Source files
• Include folders
• Preprocessing directives (-D, -U)
• Polyspace specific options about dialect used

Note: This feature supports Visual Studio versions 2008, 2010.

To import Visual Studio information into your Polyspace project:

1 In the Polyspace Project Manager, select File > Import Visual Studio Project.

The Import Visual Studio project dialog box opens.

2 Select the Visual Studio project you want to use.
3 Select the Polyspace project you want to use.
4 Click Import.

The Polyspace project is updated with the Visual Studio settings.

 Verify Code in Visual Studio

20-11

When you import a Visual Studio project, if all the source files are C files (with file
extension .c), then the project will be a C project. Otherwise, the project will be a C++
project.

Set Standard Polyspace Options

In the Project Manager perspective of the Polyspace verification environment, you specify
Polyspace verification options that you cannot set in the Easy Settings dialog box.

To open the Project Manager perspective, select Polyspace > Configure Project. The
software opens the Project Manager perspective using the last configuration (.psprj)
file updated in Visual Studio. The software does not check the consistency of this
configuration file with the current project, so it always displays a warning message. This
message indicates that the .psprj file used by the Project Manager does not correspond
to the .psprj file of the current project.

For information on how to choose your options, see “Analysis Options for C++ Code”.

Configuration File and Default Options

Some options are set by default while others are extracted from the Visual Studio project
and stored in the associated Polyspace configuration file.

• The following table shows Visual Studio options that are extracted automatically, and
their corresponding Polyspace options:

Visual Studio Option Polyspace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/FX -support-FX-option-results

20 Using Polyspace Software in Visual Studio

20-12

Visual Studio Option Polyspace Option

/Zp[1,2,4,8,16] -pack-alignment-value

[1,2,4,8,16]

• Source and include folders (-I) are also extracted automatically from the Visual
Studio project.

• Default options passed to the kernel depend on the Visual Studio release: -dialect
Visual7.1 (or -dialect visual8) -OS-target Visual -target i386 -
desktop

Monitor Verification in Visual Studio

Once you start a verification, you can follow its progress in the Polyspace Log view.

Compilation errors are highlighted as links. Click a link to display the file and line that
produced the error.

 Verify Code in Visual Studio

20-13

If the verification is being carried out on a server, use the Polyspace Job Monitor to follow
the verification progress. Select Polyspace > Job Monitor, which opens the Polyspace
Job Monitor interface dialog box.

To stop a verification, on the Polyspace Log toolbar, click X. For a server verification,
this option works only during the compilation phase, before the verification is sent to the
server. After the compilation phase, you can select Polyspace > Job Monitor and in the
Polyspace Job Monitor interface dialog box, stop the verification.

20 Using Polyspace Software in Visual Studio

20-14

For more information on the Polyspace Job Monitor, see “Manage Previous Verifications
With Polyspace Metrics”.

Review Verification Results in Visual Studio

Select Polyspace > Open Verification Results to open the Results Manager
perspective of the Polyspace verification environment with the last available results. If
verification has been carried out on a server, download the results before opening the
Results Manager perspective.

For information on reviewing and understanding Polyspace verification results, see “Run-
Time Error Review”.

Glossary-1

Glossary

Atomic In computer programming, atomic describes a
unitary action or object that is essentially indivisible,
unchangeable, whole, and irreducible.

Atomicity In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or no
pieces are committed.

Batch mode Execution of verification from the command line, rather
than via the launcher Graphical User Interface.

Category One of four types of orange check: potential bug,
inconclusive check, data set issue and basic imprecision.

Certain error See ”red check.”

Check A test performed during a verification and subsequently
colored red, orange, green or gray in the viewer.

Code verification The Polyspace process through which code is tested to
reveal definite and potential runtime errors and a set of
results is generated for review.

Dead Code Code which is inaccessible at execution time under all
circumstances due to the logic of the software executed
prior to it.

Development Process The process used within a company to progress through
the software development lifecycle.

Green check Code has been proven to be free of runtime errors.

Gray check Unreachable code; dead code.

Imprecision Approximations are made during a verification, so data
values possible at execution time are represented by
supersets including those values.

mcpu Micro Controller/Processor Unit

Orange check A warning that represents a possible error which may be
revealed upon further investigation.

Glossary

Glossary-2

Polyspace Approach The manner of using verification to achieve a particular
goal, with reference to a collection of techniques and
guiding principles.

Precision An verification which includes few inconclusive orange
checks is said to be precise

Progress text Output during verification to indicate what proportion of
the verification has been completed. Could be considered
as a “textual progress bar”.

Red check Code has been proven to contain definite runtime errors
(every execution will result in an error).

Review Inspection of the results produced by Polyspace
verification.

Scaling option Option applied when an application submitted for
verification proves to be bigger or more complex than is
practical.

Selectivitiy The ratio (green checks + gray checks + red checks) / (total
amount of checks)

Unreachable code Dead code.

Verification The Polyspace process through which code is tested to
reveal definite and potential runtime errors and a set of
results is generated for review.

